1,675
Views
0
CrossRef citations to date
0
Altmetric
Thematic Cluster: The Arctic in Rapid Transition - Marine Ecosystems

Responses in Arctic marine carbon cycle processes: conceptual scenarios and implications for ecosystem function

, , , , , , , , , , & show all
Article: 24252 | Published online: 15 Apr 2015

References

  • Aagaard K., Anderson R., Swift J., Johnson J. A large eddy in the central Arctic Ocean. Geophysical Research Letters. 2008; 35: 09601.
  • Aagaard K., Darnall C., Greisman P. Year-long current measurements in the Greenland–Spitsbergen passage. Deep-Sea Research and Oceanographic Abstracts. 1973; 20: 743–746.
  • Ådlandsvik B., Loeng H. A study of the climatic system in the Barents Sea. Polar Research. 1991; 10: 45–50.
  • Alcaraz M., Almeda R., Calbet A., Saiz E., Duarte C.M., Lasternas S., Agusti S., Santiago R., Movilla J., Alonso A. The role of Arctic zooplankton in biogeochemical cycles: respiration and excretion of ammonia and phosphate during summer. Polar Biology. 2010; 33: 1719–1731.
  • Amon R.M.W., Meon B. The biogeochemistry of dissolved organic matter and nutrients in two large Arctic estuaries and potential implications for our understanding of the Arctic Ocean system. Marine Chemistry. 2004; 92: 311–330.
  • Arrigo K.R., Pabi S., van Dijken G.L., Maslowski W. Air–sea flux of CO2 in the Arctic Ocean, 1998–2003. Journal of Geophysical Research—Biogeosciences. 2010; 115: 04024.
  • Arrigo K.R., van Dijken G., Pabi S. Impact of a shrinking Arctic ice cover on marine primary production. Geophysical Research Letters. 2008; 35: 19603.
  • Balcerak E. Models fail to capture Arctic ice thinning, drift trends. Eos, Transactions of the American Geophysical Union. 2011; 92: 384.
  • Bates N.R., Mathis J.T. The Arctic Ocean marine carbon cycle: evaluation of air–sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences. 2009; 6: 2433–2459.
  • Bates N.R., Moran S.B., Hansell D.A., Mathis J.T. An increasing CO2 sink in the Arctic Ocean due to sea-ice loss. Geophysical Research Letters. 2006; 33: 23609.
  • Bates N.R., Orchowska M.I., Garley R., Mathis J.T. Summertime calcium carbonate undersaturation in shelf waters of the western Arctic Ocean—how biological processes exacerbate the impact of ocean acidification. Biogeosciences. 2013; 10: 5281–5309.
  • Bednaršek N., Tarling G.A., Bakker D.C.E., Fielding S., Jones E.M., Venables H.J., Ward P., Kuzirian A., Lézé B., Feely R.A., Murphy E.J. Extensive dissolution of live pteropods in the Southern Ocean. Nature Geoscience. 2012; 5: 881–885.
  • Bélanger S., Cizmeli S.A., Ehn J., Matsuoka A., Doxaran D., Hooker S., Babin M. Light absorption and partitioning in the Arctic Ocean surface waters: impact of mulityear ice melting. Biogeosciences. 2013; 10: 6433–6452.
  • Bélanger S., Xie H., Krotkov N., Larouche P., Vincent W.F., Babin M. Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: interannual variability and implications of climate change. Global Biogeochemical Cycles. 2006; 20: 4005.
  • Boeuf D., Cottrell M.T., Kirchman D.L., Lebaron P., Jeanthon C. Summer community structure of aerobic anoxygenic phototrophic bacteria in the western Arctic Ocean. FEMS Microbiology Ecology. 2013; 85: 417–132.
  • Bourgain P., Gascard J.C., Shi J., Zhao J. Large-scale temperature and salinity changes in the upper Canadian Basin of the Arctic at a time of a drastic Arctic Oscillation inversion. Ocean Science. 2013; 9: 447–460.
  • Brown Z.W., Arrigo K.R. Contrasting trends in sea ice and primary production in the Bering Sea and Arctic Ocean. ICES Journal of Marine Science. 2012; 69: 1180–1193.
  • Campbell R.G., Sherr E.B., Ashjian C.J., Plourde S., Sherr B.F., Hill V., Stockwell D.A. Mesozooplankton prey preference and grazing impact in the western Arctic Ocean. Deep-Sea Research Part II. 2009; 56: 1274–1289.
  • Carmack E., Barber D., Christensen J., Macdonald R., Rudels B., Sakshaug E. Climate variability and physical forcing of the food webs and the carbon budget on panarctic shelves. Progress in Oceanography. 2006; 71: 145–181.
  • Carmack E., Wassmann P. Food webs and physical–biological coupling on pan-Arctic shelves: unifying concepts and comprehensive perspectives. Progress in Oceanography. 2006; 71: 446–477.
  • Cheung W.W.L., Lam V.W.Y., Sarmiento J.L., Kearney K., Watson R., Pauly D. Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries. 2009; 10: 235–251.
  • Coachman L.K., Aagaard K. Herman Y. Physical oceanography of Arctic and Subarctic seas. Marine geology and oceanography of Arctic seas. 1974; New York: Springer. 1–72.
  • Codispoti L.A., Kelly V., Thessen A., Matrai P., Suttles S., Hill V., Steele M., Light B. Synthesis of primary production in the Arctic Ocean: III. Nitrate and phosphate based estimates of net community production. Progress in Oceanography. 2013; 110: 126–150.
  • Comeau A.M., Li W.K.W., Tremblay J.-E., Carmack E.C., Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS One. 2011; 6: 27492.
  • Comeau S., Alliouane S., Gattuso J.-P. Effects of ocean acidification on overwintering juvenile Arctic pteropods Limacina helicina. Marine Ecology Progress Series. 2012; 456: 279–284.
  • Cottier F.R., Niksen F., Inall M.E., Gerland S., Tverbreg V., Svendsen H. Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophysical Research Letters. 2007; 34: 10607.
  • Curchitser E.N., Hedstrom K., Danielson S., Weingartner T. Adaptation of an Arctic circulation model. OCS Study BOEM 2013–202. 2013; Herndon, VA: Bureau of Ocean Energy Management, US Department of the Interior.
  • de Boyer Montegut C., Madec G., Fische A.S., Lazarn A., Ludicone D. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. Journal of Geophysical Research—Oceans. 2004; 109: 12003.
  • Del Vecchio R., Blough N.V. Photobleaching of chromophoric dissolved organic matter in natural waters: kinetics and modeling. Marine Chemistry. 2002; 78: 231–253.
  • Deubel H., Engel M., Fetzer I., Gagaev S., Hirche H.-J., Klages M., Larionov V., Lubin P., Lubina O., Nöthig E.-M., Okolodkov Y., Rachor E. Stein R. The southern Kara Sea ecosystem: phytoplankton, zooplankton and benthos communities influenced by river run-off. Siberian river run-off in the Kara Sea. 2003; Amsterdam: Elsevier.
  • Dickson R.R., Osborn T.J., Hurrell J.W., Meincke J., Blindheim J., Adlandsvik B., Vinje T., Alekseev G., Maslowski W. The Arctic Ocean response to the North Atlantic oscillation. Journal of Climate. 2000; 13: 2671–2696.
  • Dieckmann G.S., Nehrke G., Papadimitriou S., Göttlicher J., Steininger R., Kennedy H., Wolf-Gladrow D., Thomas D.N. Calcium carbonate as ikaite crystals in Antarctic sea ice. Geophysical Research Letters. 2008; 35: 08501.
  • Dittmar T., Kattner G. The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Marine Chemistry. 2003; 83: 103–120.
  • Doney S.C., Lindsay K., Moore J.K. Fasham M.J.R. Global ocean carbon cycle modelling. Ocean biogeochemistry. 2003; Berlin: Springer. 217–238.
  • Ducklow H.W., Steinberg D.K., Buesseler K.O. Upper ocean carbon export and the biological pump. Oceanography. 2001; 14: 50–58.
  • Dunton K.H., Goodall J.L., Schonberg S.V., Grebmeier J.M., Maidment D.R. Multi-decadal synthesis of benthic–pelagic coupling in the western arctic: role of cross-shelf advective process. Deep-Sea Research Part II. 2005; 52: 3462–3477.
  • Dupont F. Impact of sea-ice biology on overall primary production in a biophysical model of the pan-Arctic Ocean. Journal of Geophysical Research—Oceans. 2012; 117: 00D17.
  • Elmquist M., Semiletov I., Guo L., Gustafsson O. Pan-Arctic patterns in black carbon sources and fluvial discharges deduced from radiocarbon and PAH source apportionment markers in estuarine surface sediments. Global Biogeochemical Cycles. 2008; 22: 2018.
  • Eppley R.W. Temperature and phytoplankton growth in the sea. Fishery Bulletin. 1972; 70: 1063–1085.
  • Fahl K., Cremer H., Erlenkeuser H., Hanssen H., Hölemann J.A., Kassens H., Knickmeier K., Kosobokova K.N., Kunz-Pirrung M., Lindemann F., Markhaseva E., Lischka S., Petryashov V., Piepenburg D., Schmid M.K., Spindler M., Stein R., Tuschling K. Sources and pathways of organic carbon in the modern Laptev Sea (Arctic Ocean): implications from biological, geochemical and geological data. Polarforschung. 2001; 69: 193–205.
  • Fahrbach E., Meincke J., Østerhus S., Rohardt G., Schauer U., Tverberg V., Verduin J. Direct measurements of volume transports through Fram Strait. Polar Research. 2001; 20: 217–224.
  • Findlay H.S., Tyrrell T., Bellerby R.G.J., Merico A., Skjelvan I. Carbon and nutrient mixed layer dynamics in the Norwegian Sea. Biogeosciences. 2008; 5: 1395–1410.
  • Findlay H.S., Wood H.L., Kendall M.A., Spicer J.I., Twitchett R.J., Widdicombe S. Comparing the impact of high CO2 on calcium carbonate structures in different marine organisms. Marine Biology Research. 2011; 7: 565–575.
  • Frankignoulle M., Canon C., Gattuso J.-P. Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limnology and Oceanography. 1994; 39: 458–462.
  • Garneau M.-E., Vincent W.F., Terrado R., Lovejoy C. Importance of particle-associated bacterial heterotrophy in a coastal Arctic ecosystem. Journal of Marine Systems. 2009; 75: 185–197.
  • Gerdes R., Kauker F., Köberle C. Long term perspective on Arctic sea ice from AOMIP hindcasts and coupled climate models. 2009; MA, USA: Woods Hole. Presentation at Arctic Ocean Model Intercomparison Project Workshop 12. 14–16 January.
  • Granskog M.A., Macdonald R.W., Mundy C.J., Barber D.G. Distribution, characteristics and potential impacts of chromophoric dissolved organic matter. Continental Shelf Research. 2007; 27: 2032–2050.
  • Granskog M.A., Stedmon C.A., Dodd P.A., Amon R.M.W., Pavlov A.K., de Steur L., Hansen E. Characteristics of colored dissolved organic matter (CDOM) in the Arctic outflow in the Fram Strait: assessing the changes and fate of terrigenous CDOM in the Arctic Ocean. Journal of Geophysical Research—Oceans. 117: 12021.
  • Grebmeier J. Shifting patterns of life in the Pacific Arctic and sub-Arctic seas. Annual Review of Marine Science. 2012; 4: 63–78.
  • Grebmeier J.M., McRoy C.P., Feder H.M. Pelagic–benthic coupling on the shelf of the northern Bering and Chukchi seas. I. Food supply source and benthic biomass. Marine Ecology Progress Series. 1988; 48: 57–67.
  • Gregg W.W., Casey N.W. Modeling coccolithophores in the global oceans. Deep-Sea Research Part II. 2007; 54: 447–477.
  • Grenfell T.C., Light B., Perovich D.K. Spectral transmission and implications for the partitioning of shortwave radiation in Arctic sea ice. Annals of Glaciology. 2006; 44: 1–6.
  • Guo L., Semiletov I., Gustafsson O., Ingri J., Andersson P., Dudarev O., White D. Characterization of Siberian Arctic coastal sediments: implications for terrestrial organic carbon export. Global Biogeochemical Cycles. 2004; 18: GB1036.
  • Hanzlick D.J. The West Spitsbergen Current: transport, forcing and variability. 1983; PhD thesis, University of Washington.
  • Harrison W.G., Cota G.F. Primary production in polar waters: relation to nutrient availability. Polar Research. 1991; 10: 87–104.
  • Hegseth E.N. Primary production of the northern Barents Sea. Polar Research. 1998; 17: 113–123.
  • Helms J.R., Stubbins A., Ritchie J.D., Minor E.C., Kieber D.J., Mopper K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography. 2008; 53: 955–969.
  • Hill V.J. Impacts of chromophoric dissolved organic material on surface ocean heating in the Chukchi Sea. Journal of Geophysical Research—Oceans. 2008; 113: 07024.
  • Hirche H.-J. Temperature and plankton. II. Effect on respiration and swimming activity in copepods from the Greenland Sea. Marine Biology. 1987; 94: 347–356.
  • Hirche H.J., Kosobokova K.N., Gaye-Haake B., Harms I., Meon B., Nöthig E.-M. Structure and function of contemporary food webs on Arctic selves: a panarctic comparison. The pelagic system of the Kara Sea—communities and components of carbon flow. Progress in Oceanography. 2006; 71: 288–313.
  • Hofmann E.E., Cahill B., Fennel K., Friedrichs M.A., Hyde K., Lee C, Mannino A., Najjar R.G., O'Reilly J.E., Wilkin J., Xue J. Modeling the dynamics of continental shelf carbon. Annual Review of Marine Science. 2011; 3: 93–122.
  • Holmes R.M., McClelland J.W., Peterson B.J., Tank S.E., Bulygina E., Eglinton T.I., Gordeev V.V., Gurtovaya T.Y., Raymond P.A., Repeta D.J., Staples R., Striegl R.G., Zhulidov A.V., Zimov S.A. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries and Coasts. 2011; 35: 369–382.
  • Hopcrof R.R., Clarke C., Nelson R.J., Raskoff K.A. Zooplankton communities of the Arctic's Canada Basin: the contribution by smaller taxa. Polar Biology. 2005; 28: 198–206.
  • Hovland E.K., Dierssen H.M., Ferreira A.S., Johnsen G. Dynamics regulating major trends in Barents Sea temperatures and subsequent effect on remotely sensed particulate inorganic carbon. Marine Ecology Progress Series. 2013; 484: 17–32.
  • Howard-Jones M.H., Ballard V.D., Allen A.E., Frischer M.E., Verity P.G. Distribution of bacterial biomass and activity in the marginal ice zone of the central Barents Sea during summer. Journal of Marine Systems. 2002; 38: 77–91.
  • Hunt G.L. Jr., Blanchard A.L., Boveng P., Dalpadado P., Drinkwater K.F., Eisner L., Hopcroft R.R., Kovacs K.M., Norcross B.L., Renaud P., Reigstad M., Renner R., Skjoldal H.R., Whitehouse A., Woodgate R.A. The Barents and Chukchi seas: comparison of two Arctic shelf ecosystems. Journal of Marine Systems. 2013; 109–110: 43–68.
  • Ikeda T., Kano Y., Ozaki K., Shinada A. Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Marine Biology. 2001; 139: 587–596.
  • Ikeda T., Skjoldal H.R. Metabolism and elemental composition of zooplankton from the Barents Sea during early Arctic summer. Marine Biology. 1989; 100: 173–183.
  • Ivleva I.V. The dependence of crustacean respiration rate on body mass and habitat temperature. International Review of Hydrobiology. 1980; 65: 1–47.
  • Jahn A., Aksenov Y., de Cuevas B., de Steur L., Hakkinen S., Hansen E., Herbaut C., Houssais M.-N., Karcher M.J., Kauker F., Lique C., Nguyen A.T., Pemberton P., Worthen D.L., Zhang J. Arctic Ocean freshwater: how robust are model simulations?. Journal of Geophysical Research—Oceans. 2012; 117: 00D16.
  • Jeansson E., Olsen A., Eldevik T., Skjelvan I., Omar A.M., Lauvset S.K., Nilsen J.E.Ø., Bellerby R.G.J., Johannessen T., Falck E. The Nordic Sea carbon budget: sources, sinks, and uncertainties. Global Biogeochemical Cycles. 2011; 25: 4010.
  • Jumars P.A., Penry D.L., Baross J.A., Perry M.J., Frost B.W. Closing the microbial loop—dissolved carbon pathway to hetertrophic bacteria from incomplete ingestion, digestion and absorption in animals. Deep-Sea Research Part I. 1989; 36: 483–495.
  • Jutterström S., Anderson L.G. The saturation of calcite and aragonite in the Arctic Ocean. Marine Chemistry. 2005; 94: 101–110.
  • Kędra M., Kuliński K., Walkusz W., Legeżyńska J. The shallow benthic food web structure in the High Arctic does not follow seasonal changes in the surrounding environment. Estuarine, Coastal and Shelf Science. 2012; 114: 183–191.
  • Kirchman D.L., Hill V., Cottrell M.T., Gradinger R., Malmstrom R.R., Parker A. Standing stocks, production, and respiration of phytoplankton and hetertrophic bacteria in the western Arctic Ocean. Deep-Sea Research Part II. 2009; 56: 1237–1248.
  • Kivimae C., Bellerby R.G.J., Fransson A., Reigstad M., Johannessen T. A carbon budget for the Barents Sea. Deep-Sea Research Part I. 2010; 57: 1532–1542.
  • Kosobokova K., Hirche H.-J. Biomass of zooplankton in the eastern Arctic Ocean—a base line study. Progress in Oceanography. 2009; 82: 265–280.
  • Kroeker J.K., Kordas R.L., Crom R., Hendriks I.E., Ramajo L., Singh G.S., Duarte C.M., Garruso J.-P. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology. 2013; 19: 1884–1896.
  • Lalande C. Vertical export of biogenic matter in the Chukchi and Barents seas. 2006; PhD thesis, University of Tennessee.
  • Lancelot C., Hannon E., Becquevort S., Veth C., De Baar H.J.W. Modeling phytoplankton blooms and carbon export production in the Southern Ocean: dominant controls by light and iron in the Atlantic sector in Austral spring 1992. Deep-Sea Research Part I. 2000; 47: 1621–1662.
  • Lavoie D., Macdonald R.W., Denman K.L. Primary productivity and export fluxes on the Canadian shelf of the Beaufort Sea: a modelling study. Journal of Marine Systems. 2009; 75: 17–32.
  • Lee S.H., Yun M.S., Kim B.K., Saitoh S., Kang C.-K., Kang S.-H., Whitledge T. Latitudinal carbon production in the Bering and Chukchi seas during summer in 2007. Continental Shelf Research. 2013; 59: 28–36.
  • Le Fouest W., Babin M., Tremblay J.-E. The fate of riverine nutrients on Arctic shelves. Biogeosciences. 2013; 10: 3661–3677.
  • Lenn Y.D., Rippeth T.P., Old C.P., Bacon S., Polyakov I., Ivanov V., Hölemann J. Intermittent intense turbulent mixing under ice in the Laptev Sea continental shelf. Journal of Physical Oceanography. 2011; 41: 531–547.
  • Levinsen H., Turner J.T., Nielsen T.G., Hansen B.W. On the trophic coupling between protists and copepods in arctic marine ecosystems. Marine Ecology Progress Series. 2000; 204: 65–77.
  • Li W.K.W., McLaughlin F.A., Lovejoy C., Carmack E.C. Smallest algae thrive as the Arctic Ocean freshens. Science. 2009; 326: 539.
  • Light B., Grenfell T.C., Perovich D.K. Transmission and absorption of solar radiation by Arctic sea ice during the melt season. Journal of Geophysical Research—Oceans. 2008; 113: 03023.
  • Loeng H. Features of the physical oceanographic conditions of the Barents Sea. Polar Research. 1991; 10: 5–18.
  • Loeng H., Drinkwater K. An overview of the ecosystems of the Barents and Norwegian seas and their response to climate variability. Deep-Sea Research Part II. 2007; 54: 23–26.
  • Long M.C., Lindsay K., Peacock S., Moore J.K., Doney S.C. Twentieth-century oceanic carbon uptake and storage in CESM1 (BGC). Journal of Climate. 2013; 26: 6775–6800.
  • Lovvorn J.R., Cooper L.W., Brooks M.L., De Ruyck C.C., Bump J.K., Grebmeier J.M. Organic matter pathways to zooplankton and benthos under pack ice in late winter and open water in late summer in the north–central Bering Sea. Marine Ecology Progress Series. 2005; 291: 135–150.
  • Manizza M., Follows M.J., Dutkiewicz S., McClelland J.W., Menemenlis D., Hill C.N., Townsend-Small A., Peterson B.J. Modeling transport and fate of riverine dissolved organic carbon in the Arctic Ocean. Global Biogeochemical Cycles. 2009; 23: 4006.
  • Manizza M., Follows M.J., Dutkiewicz S., Menemenlis D., Hill C.N., Key R.M. Changes in the Arctic Ocean CO2 sink (1996–2007): a regional model analysis. Global Biogeochemical Cycles. 2013; 27: 1108–1118.
  • Manizza M., Follows M.J., Dutkiewicz S., Menemenlis D., McClelland J.W., Hill C.N., Peterson B.J., Key R.M. A model of the Arctic Ocean carbon cycle. Journal of Geophysical Research—Oceans. 2011; 116: 12020.
  • Manney G.L., Santee M.L., Rex M., Livesey N.J., Pitts M.C., Veefkind P., Nash E.R., Wohltmann I., Lehmann R., Froidevaux L., Poole L.R., Schoeberl M.R., Haffner D.O., Davies J., Dorokhov V., Gernandt H., Johnson B., Kivi R., Kyrö E., Larsen N., Levelt P.F., Makshtas A., McElroy C.T., Nakajima H., Concepcion Parrondo M., Tarasick D.W., von der Gathen P., Walker K.A., Zinoviev N.S. Unprecedented Arctic ozone loss in 2011. Nature. 2011; 478: 469–475.
  • Marshall J., Hill C., Perelman L., Adcroft A. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modelling. Journal of Geophysical Research—Oceans. 1997; 102: 5733–5752.
  • Maslowski W., Lipscomb W.H. High resolution simulations of Arctic sea ice, 1979–1993. Polar Research. 2003; 22: 67–74.
  • Mathis J.T., Cross J.N., Bates N.R., Bradley Moran S., Lomas M.W., Mordy C.W., Stabeno P.J. Seasonal distribution of dissolved inorganic carbon and net community production on the Bering Sea shelf. Biogeosciences. 2010; 7: 1769–1787.
  • Mathis J.T., Pickart R.S., Byrne R.H., McNeil C.L., Moore G.W.K., Juranek L.W., Liu X., Ma J., Easley R.A., Elliot M.M., Cross J.N., Reisdorph S.C., Bahr F., Morison J., Lichendorf T., Feely R.A. Storm-induced upwelling of high pCO2 waters onto the continental shelf of the western Arctic Ocean and implications for carbonate mineral saturation states. Geophysical Research Letters. 2012; 39: 07606.
  • Matsumoto K., Sarmiento J.L., Key R.M., Bullister J.L., Caldeira K., Campin J.-M., Doney S.C., Drange H., Dutay J.-C., Follows M., Gao Y., Gnanadesikan A., Gruber N., Ishida A., Joos F., Lindsay K., Maier-Reimer E., Marshall J.C., Matear R.J., Monfray P., Najjar R., Platter G.-K., Schlitzer R., Slater R., Swathi P.S., Totterdell I.J., Weirig M.-F., Yamanaka Y., Yool A., Orr J.C. Evaluation of ocean carbon cycle models with data-based metrics. Geophysical Research Letters. 2004; 31: 07303.
  • McGuire A.D., Anderson L.G., Christensen T.R., Dallimore S., Guo L., Hayes D.J., Heimann M., Lorenson T.D., Macdonald R.W., Roulet N. Sensitivity of the carbon cycle in the Arctic to climate change. Ecological Monographs. 2009; 79: 523–555.
  • McLaughlin F.A., Carmack E.C. Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior, 2003–2009. Geophysical Research Letters. 2010; 37: 24602.
  • McLaughlin F.A., Carmack E.C., Macdonald R.W., Bishop J.K. Physical and geochemical properties across the Atlantic/Pacific water mass front in the southern Canadian Basin. Journal of Geophysical Research—Oceans. 1996; 101: 1183–1197.
  • Meon B., Amon R.M.W. Hetertrophic bacterial activity and fluxes of dissolved free amino acids and glucose in the Arctic rivers Ob, Yenisei and the adjacent Kara Sea. Aquatic Microbial Ecology. 2004; 37: 121–135.
  • Merico A., Tyrrell T., Lessard E.J., Oguz T., Stabeno P.J., Zeeman S.I., Whitledge T.W. Modelling phytoplankton succession on the Bering Sea shelf: role of climate influences and trophic interactions in generating Emiliania huxleyi blooms 1997–2000. Deep-Sea Research Part I. 2004; 51: 1803–1826.
  • Miles M.W., Divine D.V., Furevik T., Jansen E., Moros M., Ogilvie A.E.J. A signal of persistent Atlantic multidecadal variability in Arctic sea ice. Geophysical Research Letters. 2014; 41: 463–469.
  • Miller G.H., Brigham-Grette J., Alley R.B, Anderson L., Bauch H.A., Douglas M.S.V., Edwards M.E., Elias S.A., Finney B.P., Fitzpatrick J.J., Funder S.V., Herbert T.D., Hinzman L.D., Kaufman D.S., MacDonald G.M., Polyak L., Robock A., Serreze M.C., Smol J.P., Spielhagen R., White J.W.C., Wolfe A.P., Wolff E.W. Temperature and precipitation history of the Arctic. Quaternary Science Reviews. 2010; 29: 1679–1715.
  • Miller W.L., Moran M.A. Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment. Limnology and Oceanography. 1997; 42(6): 1317–1324.
  • Miller W.L., Zepp R.G. Photochemical production of dissolved inorganic carbon from terrestrial organic matter: significance to the oceanic organic carbon cycle. Geophysical Research Letters. 1995; 22: 417–420.
  • Møller E.F. Sloppy feeding in marine copepods: prey-size-dependent production of dissolved organic carbon. Journal of Plankton Research. 2005; 27: 27–35.
  • Møller E.F. Production of dissolved organic carbon by sloppy feeding in the copepods Acartia tonsa, Centropages typicus, and Temora longicornis. Limnology and Oceanography. 2007; 52: 79–84.
  • Møller E.F., Nielsen T.G. Production of bacterial substrate by marine copepods: effects of phytoplankton biomass and cell size. Journal of Plankton Research. 2001; 23: 527–536.
  • Moore J.K., Doney S.C., Lindsay K. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochemical Cycles. 2004; 18: 4028.
  • Mopper K., Kieber D.J. de Mora S. Marine photochemistry and its impact on carbon cycling. The effects of UV radiation on the marine environment. 2009; Cambridge: Cambridge University Press. 101–129.
  • Moran M.A., Zepp R.G. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnology and Oceanography. 1997; 42: 1307–1316.
  • Moran S.B., Kelly R.P., Hagstrom K., Smith J.N., Grebmeier J.M., Cooper L.W., Cota G.F., Walsh J.J., Bates N.R., Hansell D.A., Maslowski W., Nelson R.P., Mulsow S. Seasonal changes in POC export flux in the Chukchi Sea and implications for water column–benthic coupling in Arctic shelves. Deep-Sea Research Part II. 2005; 52: 3427–3451.
  • Morata N., Michaud E., Włodarska-Kowalczuk M. Impact of early food input on the Arctic benthos activities during the polar night. Polar Biology. 2015; 38: 99–114.
  • Morata N., Renaud P.E., Brugel S., Hobson K.A., Johnson B.J. Spatial and seasonal variations in the pelagic–benthic coupling of the southeastern Beaufort Sea revealed by sedimentary biomarkers. Marine Ecology Progress Series. 2008; 371: 47–63.
  • Morata N., Søreide J.E. Effect of light and food on the metabolism of the Arctic copepod Calanus glacialis. Polar Biology. 2015; 38: 67–73.
  • Morse J.W., Berner R.A. Dissolution kinetics of calcium carbonate in seawater: II. A kinetic origin for the lysocline. American Journal of Science. 1972; 272: 840–851.
  • Mundy C.J., Barber D.G., Michel C. Variability of snow and ice thermal, physical and optical properties pertinent to sea ice algae biomass during spring. Journal of Marine Systems. 2005; 58: 107–120.
  • Najjar R.G., Jin X., Louanchi F., Aumont O., Caldeira K., Doney S.C., Dutay J., Follows M., Gruber N., Joos F., Lindsay K. Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Global Biogeochemical Cycles. 2007; 21: 3007.
  • Ngyuyen D., Maranger R. Respiration and bacterial carbon demand in Arctic sea ice. Polar Biology. 2011; 34: 1843–1855.
  • Nomura D., Assmy P., Nehrke G., Granskog M.A., Fischer M., Dieckmann G.S., Fransson A., Hu Y.B., Schnetger B. Characterization of ikaite (CaCO3·6H2O) crystals in first-year Arctic sea ice north of Svalbard. Annals of Glaciology. 2013; 54: 125–131.
  • Olli K., Wassmann P., Reigstad M., Ratkova T.N., Arashkevich E., Pasternak A., Matrai P.A., Knulst J., Tranvik L., Klais R., Jacobsen A. The fate of production in the central Arctic Ocean—top-down regualtion by zooplankton expatriates?. Progress in Oceanography. 2007; 72: 84–113.
  • Ortega-Retuerta E., Joux F., Jeffrey W.H., Ghiglione J.F. Spatial variability of particle-attached and free-living bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic). Biogeosciences Discussion. 2012; 9: 17401–17435.
  • Peterson B.J., Holmes R.M., McClelland J.W., Vörösmarty C.J., Lammers R.B., Shiklomanov A.I., Shiklomanov I.A., Rahmstorf S. Increasing river discharge to the Arctic Ocean. Science. 2002; 298: 2171–2173.
  • Pnyushkov A.V., Polyakov I.V. Observations of tidally induced currents over the continental slope of the Laptev Sea, Arctic Ocean. Journal of Physical Oceanography. 2012; 42: 78–94.
  • Polyakov I.V., Timokhov L.A., Alexeev V.A., Bacon S., Dmitrenko I.A., Fortier L., Frolov I.E., Gascard J.-C., Hansen E., Ivanov V.V., Laxon S., Mauritzen C., Perovich D., Shimada K., Simmons H.L., Sokolov V.T., Steele M., Toole J. Arctic Ocean warming contributes to reduced polar ice cap. Journal of Physical Oceanography. 2010; 40: 2743–2756.
  • Popova E.E., Yool A., Aksenov Y., Coward A.C., Anderson T.R. Regional variability of acidification in the Arctic: a sea of contrasts. Biogeosciences. 2014; 11: 293–308.
  • Popova E.E., Yool A., Coward A.C., Dupont F., Deal C., Elliott S., Hunke E., Jin M., Steele M., Zhang J. What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry. Journal of Geophysical Research—Oceans. 2012; 117: 00D12.
  • Prisenberg S.J., Hamilton J. Monitoring the volume, freshwater and heat fluxes passing through Lancaster Sound in the Canadian Arctic Archipelago. Atmopshere–Ocean. 2005; 43: 1–22.
  • Rachold V., Eiken H., Gordeev V.V., Grigoriev M.N., Hubberten H.-W., Lisitzin A.P., Shevchenko V.P., Schirrmeister L. Stein R., Macdonald R.W. Modern and terrigenous organic carbon input to the Arctic Ocean. The organic carbon cycle in the Arctic Ocean. 2004; Berlin: Springer. 33–55.
  • Reigstad M., Wexels Riser C., Wassmann P., Ratkova T. Vertical export of particulate organic carbon: attenuation, composition and loss rates in the northern Barents Sea. Deep-Sea Research Part II. 2008; 55: 2308–2319.
  • Renaud P.E., Riedel A., Michel C., Morata N., Gosselin M., Juul-Pedersen T., Chiuchiolo A. Seasonal variation in benthic community oxygen demand: a response to an ice algal bloom in the Beaufort Sea, Canadian Arctic?. Journal of Marine Systems. 2007; 67: 1–12.
  • Rey F. Skjodal H.R. Phytoplankton: the grass of the sea. The Norwegian Sea ecosystem. 2004; Trondheim: Tapir Academic Press. 97–136.
  • Rhein M., Rintoul S.R., Aoki S., Campos E., Chambers D., Feely R.A., Gulev S., Johnson G.C., Josey S.A., Kostianoy A., Mauritzen C., Roemmich D., Talley L.D., Wang F. Stocker T.F. Observations: ocean. Climate change 2013. The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013; Cambridge: Cambridge University Press. 255–315.
  • Riser C.W., Wassmann P., Olli K., Pasternak A., Arashkevich E. Seasonal variation in production, retention and export of zooplankton faecal pellets in the marginal ice zone and central Barents Sea. Journal of Marine Systems. 2002; 38: 175–188.
  • Rivkin R.B., Legendre L. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science. 2001; 291: 2398–2400.
  • Rodrigues R.M.N.V., Williams P.J.l.B. Heterotrophic bacterial utilization of nitrogenous and nonnitrogenous substrates, determined from ammonia and oxygen fluxes. Limnology and Oceanography. 2001; 46: 1675–1683.
  • Rossoll D., Bermudez R., Hauss H., Schulz K.G., Riebesell U., Sommer U., Winder M. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS One. 2012; 7: 34737.
  • Roy S., Harris R.P., Poulet S.A. Inefficient feeding by Calanus helogolandicus and Temora longicornis on Coscinodiscus wailesii—quantitative estimation using chlorophyll-type pigments and effects on dissolved free amino acids. Marine Ecology Progress Series. 1989; 52: 145–153.
  • Rysgaard S., Glud R.N., Lennert K., Cooper M., Halden N., Leakey R.J.G., Hawthrone F.C., Barber D. Ikaite crystals in melting sea ice—implications for pCO2 and pH levels in Arctic surface waters. Cryosphere. 2012; 6: 901–908.
  • Saba G.K., Steinberg D.K., Bronk D.A. The relative importance of sloppy feeding, excretion, and fecal pellet leaching in the release of dissolved carbon and nitrogen by Acartia tonsa copepods. Journal of Experimental Marine Biology and Ecology. 2011; 404: 47–56.
  • Saliot A., Cauwet G., Cahet G., Mazaudier D., Dauma R. Microbial activities in the Lena River delta and Laptev Sea. Marine Chemistry. 1996; 53: 247–254.
  • Samtleben C., Bickert T. Coccoliths in sediment traps from the Norwegian Sea. Marine Micropaleontology. 1990; 16: 39–64.
  • Schauer U., Fahrbach E., Osterhus S., Rohardt G. Arctic warming through the Fram Strait: oceanic heat transport from 3 years of measurements. Journal of Geophysical Research—Oceans. 2004; 109: 06026.
  • Schwarz J.N., Kowalczuk P., Kaczmarek S., Cota G.F., Mitchell B.G., Kahru M., Chavez F.P., Cunningham A., McKee D., Gege P., Kishino T., Phinney D.A., Raine R. Two models for absorption by coloured dissolved organic matter (CDOM). Oceanologia. 2002; 44: 209–241.
  • Seibel B.A., Maas A.E., Dierssen H.M. Energetic plasticity underlies a variable response to ocean acidification in the pteropod, Limacina helicina Antarctica. PLoS One. 2012; 7: 30464.
  • Serreze M.C., Barry R.G. Process and impacts of Arctic amplification: a research synthesis. Global and Planetary Change. 2011; 77: 85–96.
  • Shadwick E.H., Trull T.W., Thomas H., Gibson J.A.E. Vulnerability of polar oceans to anthropogenic acidification: comparison of Arctic and Antarctic seasonal cycles. Scientific Reports. 2013; 3 article no. 2339.
  • Sherr B.F., Sherr E.B. Community respiration/production and bacterial activity in the upper water column of the central Arctic Ocean. Deep-Sea Research Part I. 2003; 50: 529–542.
  • Sherr E.B., Sherr B.F., Fessenden L. Heterotrophic protists in the central Arctic Ocean. Deep-Sea Research Part II. 1997; 44: 1665–1682.
  • Sherr E.B., Sherr B.F., Hartz A.J. Microzooplankton grazing impact in the western Arctic Ocean. Deep-Sea Research Part II. 2009; 56: 1264–1273.
  • Sherr E.B., Sherr B.F., Wheeler P.A., Thompson K. Temporal and spatial variation in stocks of autotrophic and heterotrophic microbes in the upper water column of the central Arctic Ocean. Deep-Sea Research Part I. 2003; 50: 557–571.
  • Sholkovitz E.R. Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater. Geochimica et Cosmochimica Acta. 1976; 40: 831–845.
  • Sholkovitz E.R. The flocculation of dissolved Fe, Mn, Al, Cu, Ni, Co and Cd during estuarine mixing. Earth and Planetary Science Letters. 1978; 41: 77–86.
  • Skogen M.D., Olsen A., Borsheim K.Y., Sando A.B., Skjelvan I. Modelling ocean acidification in the Nordic and Barents seas in present and future climate. Journal of Marine Systems. 2014; 131: 10–20.
  • Smedsrud L.H., Esau I., Ingvaldsen R.B., Eldevik T., Haugan P.M., Camille L., Lien V.S., Olsen A., Omar A.M., Otterå O.H., Risebrobakken B., Sandø A.B., Semenov V.A., Sorokina S.A. The role of the Barents Sea in the Arctic climate system. Reviews of Geophysics. 2013; 51: 415–449.
  • Smith W.O. Jr., Sakshaug E. Smith Jr W.O. Polar phytoplankton. Polar oceanography. Part B. Chemistry, biology and geology. 1990; New York: Academic Press. 477–525.
  • Søreide J.E., Hop H., Carroll M.L., Falk-Petersen S., Hegseth E.N. Seasonal food web structures and sympagic–pelagic coupling in the European Arctic revealed by stable isotopes and a two-source food web model. Progress in Oceanography. 2006; 71: 59–87.
  • Springer A.M., McRoy C.P., Turco K.R. The paradox of pelagic food webs in the northern Bering Sea. II. Zooplankton communities. Continental Shelf Research. 1989; 9: 359–386.
  • Stedmon C.A., Amon R.M.W., Rinehart A.J., Walker S.A. The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: pan Arctic trends and differences. Marine Chemistry. 2011; 124: 108–118.
  • Stein R., Macdonald R.W. Stein R., Macdonald R.W. Organic carbon budget: Arctic Ocean vs. global ocean. The organic carbon cycle in the Arctic Ocean. 2004; Berlin: Springer. 315–322.
  • Steinacher M., Joos F., Froelicher T.L., Plattner G.K., Doney S.C. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle–climate model. Biogeosciences. 2009; 6: 515–533.
  • Steiner N.S., Christian J.R., Six K.D., Yamamoto A., Yamamoto-Kawai M. Future ocean acidification in the Canada Basin and surrounding Arctic Ocean from CMIP5 earth system models. Journal of Geophysical Research—Oceans. 2014; 119: 332–347.
  • Striegl R.G., Dornblaser M.M., Aiken G.R., Wickland K.P., Raymond P.A. Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005. Water Resources Research. 2007; 43: 02411.
  • Stubbins A., Law C.S., Uher G., Upstill-Goddard R.C. Carbon monoxide apparent quantum yields and photoproduction in the Tyne estuary. Biogeosciences. 2011; 8: 703–713.
  • Stubbins A., Uher G., Law C.S., Mopper K., Robinson C., Upstill-Goddard R.C. Open-ocean carbon monoxide photoproduction. Deep-Sea Research Part II. 2006; 53: 1695–1705.
  • Symon C., Arris L., Heal B. Arctic climate impact assessment. 2005; Cambridge: Cambridge University Press.
  • Takahashi K., Nagao N., Taguchi S. Respiration of adult female Calanus hyperboreus (Copepoda) during spring in the North Water Polynya. Polar Biosciences. 2002; 15: 45–51.
  • Tande K.S. The effects of temperature on metabolic rates of different life stages of Calanus glacialis in the Barents Sea. Polar Biology. 1988; 8: 457–461.
  • Taylor J.D., Kennedy W.J. The influence of the periostracum on the shell structure of bivalve molluscs. Calcified Tissue Research. 1969; 3: 274–283.
  • Telang S.A., Pocklington R., Naidu A.S., Romankevich E.A., Gitelson I.I., Gladyshev M.I. Carbon and mineral transport in major North American, Russian Arctic, and Siberian rivers: the St Lawrence, the Mackenzie, the Yukon, the Arctic Alaskan rivers, the Arctic basin rivers in the Soviet Union, and the Yenisei. Biogeochemistry of Major World Rivers. 1991; 42: 75–104.
  • Thor P., Dam H.G., Rogers D.R. Fate of organic carbon released from decomposing copepod fecal pellets in relation to bacterial production and ectoenzymatic activity. Aquatic Microbial Ecology. 2003; 33: 279–288.
  • Tremblay J.E., Gagnon J. Nihoul C.J., Kostianoy A.G. The effects of irradiance and nutrient supply on the productivity of Arctic waters: a perspective on climate change. Influence of climate change on the changing Arctic and Subarctic conditions. 2009; Berlin: Springer. 73–92.
  • Urban-Rich J. Release of dissolved organic carbon from copepod fecal pellets in the Greenland Sea. Journal of Experimental Marine Biology and Ecology. 1999; 232: 107–124.
  • Valentine R.L., Zepp R.G. Formation of carbon monoxide from the photodegradation of terrestrial dissolved organic carbon in natural waters. Environmental Science & Technology. 1993; 27: 409–412.
  • Vallières C., Retamal L., Ramlal P., Osburn C.L., Vincent W.F. Bacterial production and microbial food web structure in a large Arctic river and the coastal Arctic Ocean. Journal of Marine Systems. 2008; 74: 756–773.
  • Vancoppenolle M., Bopp L., Madec G., Dunne J., Ilyina T., Halloran P.R., Steiner N. Future Arctic Ocean primary productivity from CMIP5 simulations: uncertain outcome, but consistent mechanisms. Global Biogeochemical Cycles. 2013; 27: 605–619.
  • Vaquer-Sunyer R., Duarte C.M., Santiago R., Wassmann P., Reigstad M. Experimental evaluation of planktonic respiration response to warming in the European Arctic Sector. Polar Biology. 2010; 33: 1661–1671.
  • Verity P.G., Wassmann P., Frischer M.E., Howard-Jones M.H., Allen A.E. Grazing of phytoplankton by microzooplankton in the Barents Sea during early summer. Journal of Marine Systems. 2002; 38: 109–123.
  • Vinogradov M.E., Shushkina E.A., Lebedeva L.P., Gagarin V.I. Mesoplankton in the eastern part of the Kara Sea and Ob and Yenisei rivers estuaries. Oceanology. 1995; 34: 716–723.
  • Walczowski W., Piechura J., Osinski R., Wieczorek P. The West Spitsbergen Current volume and heat transport from synoptic observations in summer. Deep-Sea Research Part I. 2005; 52: 1374–1391.
  • Wassmann P. Arctic marine ecosystems in an era of rapid climate change. Progress in Oceanography. 2011; 90: 1–17.
  • Wassmann P., Reigstad M. Future Arctic Ocean seasonal ice zones and implications for pelagic–benthic coupling. Oceanography. 2011; 24: 220–231.
  • Weydmann A., Carstensen J., Goszczko I., Dmoch K., Olszewska A., Kwasniewski S. Shift towards the dominance of boreal species in the Arctic: inter-annual and spatial zooplankton variability in the West Spitsbergen Current. Marine Ecology Progress Series. 2014; 501: 41–52.
  • Wheeler P.A., Gosselin M., Sherr E., Thibault D., Kirchman D.L., Benner R., Whitledge T.E. Active cycling of organic carbon in the central Arctic Ocean. Nature. 1996; 380: 697–699.
  • Whitehouse A. Modeling the eastern Chukchi Sea food web with a mass-balance approach. 2011; Master's thesis, School of Aquatic and Fishery Sciences, University of Washington, Seattle.
  • Whiteley N.M. Physiological and ecological responses of crustaceans to ocean acidification. Marine Ecology Progress Series. 2011; 430: 257–271.
  • Woodgate R., Weingartner T., Lindsay R. Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic ocean water column. Geophysical Research Letters. 2012; 39: 24603.
  • Woodgate R.A., Aagaard K. Monthly temperature, salinity, and transport variability of the Bering Strait through flow. Geophysical Research Letters. 2006; 32: 04601.
  • Yool A., Oschlies A., Nurser A.J.G. A model-based assessment of the TrOCA approach for estimating anthropogenic carbon in the ocean. Biogeosciences. 2010; 7: 723–751.
  • Zhang J., Spitz Y.H., Steele M., Ashjian C., Campbell R., Berlin L., Matrai P. Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem. Journal of Geophysical Research—Oceans. 2010; 115: 10015.