182
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

In search of a simple scaling for the height of the stratified atmospheric boundary layer

&
Pages 419-433 | Received 02 Feb 1987, Accepted 09 Feb 1987, Published online: 15 Dec 2016

References

  • Brost, R. A. and Wyngaard, J. C. 1978. A model study of the stably stratified planetary boundary layer. J. Atmos. Sci. 35, 1427–1440.
  • Caughey, S. J. and Palmer, S. G. 1979. Some aspects of turbulence structure through the depth of the convective boundary layer. Quart. J. R. Met. Soc. 105, 811–827.
  • Caughey, S. J., Wyngaard, J. C. and Kaimal J. C. 1979. Turbulence in the evolving stable boundary layer. J. Atmos. Sci. 36, 1041–1052.
  • Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. G. and Troup, A. J. 1971. The Wangara experiment: Boundary Layer Data. Techn. Pap. No. 19, CSIRO, Division of Meteorological Physics, Aspendale, Australia, 362 pp.
  • Deardorff, J. W., Willis, G. E. and Stockton B. H. 1980. Laboratory studies of the entrainment zone of a convectively mixed layer. J. Fluid Mech. 100, 41–64.
  • Driedonks, A. G. M. and Tennekes, H. 1984. Entrainment effects in the well-mixed atmospheric boundary layer. Boundary-layer Meteorol. 30, 75–105.
  • Fernando, H. J. S. and Long, R. R. 1985. On the nature of the entrainment interface of a two-layer fluid subjected to zero-mean-shear turbulence. J. Fluid Mech. 151, 21–53
  • Garnich, N. G. and Kitaigorodskii, S. A. 1977. On the rate of deepening of the oceanic mixed layer. lzy Acad. Sci. USSR, Atmos. Ocean. Phys. 13, 888–893.
  • Garnich, N. G. and Kitaigorodskii S. A. 1978. On the theory of the deepening of the upper quasihomo-geneous ocean layer owing to the processes of purely wind-induced mixing. Izu. Acad. Sci. USSR, Atmos. Ocean, Phys. 14, 748–755.
  • Garratt, J. R. and Brost, R. A. 1981. Radiative cooling effects within and above the nocturnal boundary layer. J. Atmos. Sci. 38, 2730–2746.
  • Hicks, B. B. 1981. An analysis of Wangara micro-meteorology: surface stress, sensible heat, evaporation, and dewfall. NOAA Techn. Memorandum ERL ARL-I 04, 36 pp.
  • Joffre, S. M. 1981. The physics of the mechanically-driven atmospheric boundary layer as an example of air-sea ice interactions. Report no. 20, Dept. Meteorology, Univ. of Helsinki, 75 pp.
  • Joffre, S. M. 1982. Momentum and heat transfers in the surface layer over a frozen sea. Boundary-Layer Meteorol, 24, 211–229.
  • Joffre, S. M. 1983. Determining the form drag contribution to the total stress of the atmospheric flow over ridged sea ice. J. Geophys. Res. 88, 4524–4530.
  • Kazanski, A. B. and Monin, A. S. 1960. The turbulent regime above the surface atmospheric layer. Izu. Acad. Sci. Ser. Geofiz. 1, 165–168.
  • Kitaigorodskii, S. A. 1960. Calculating the thickness of the wind-induced mixing layer in the ocean. lzu. Akad. Nauk SSSR., Ser Geof. 3. 425–431 ( English Ed. 284-287).
  • Kitaigorodskii, S. A., 1973. The physics of air-sea interaction., Israel Prog. Scient. Transl., Jerusalem, pp. 236.
  • Kitaigorodskii, S. A. 1979. Review of the theories of wind mixed layer deepening. Marine Forecasting. Proceedings of X Liege Colloquium on Ocean Hydro-dynamics, Elsevier Publ. 4, 1–33.
  • Kitaigorodskii, S. A. 1988. A note on similarity theory for atmospheric boundary layers in presence of background stable stratification. Tellus 40A, 434–438.
  • Mahrt, L. and André, J. C. 1983. On the stratification of turbulent mixed layers. J. Geophys, Res. 88, 2662–2666.
  • Mahrt, L. and Lenschow, D. H. 1976. Growth dynamics of the convectively mixed-layer. J. Atmos. Sci. 33, 41–51.
  • Melgarejo, J. W. and Deardorff, J. W. 1974. Stability functions for the boundary layer resistance laws based on observed boundary-layer heights. J. Atmos. Sci. 31, 1324–1333.
  • Monin, A. S. and Obukhov, A. M. 1954. Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst. Akad Nauk USSR 24 (151), 173 187.
  • Nicholls, S. 1985. The structure of the marine atmospheric boundary layer observed during JASIN. Quart. J. R. Met. Soc. 111, 391–426.
  • Nicholls, S. and C. J. Readings 1979. Aircraft observations of the structure of the lower boundary layer over the sea. Quart. J. R. Met. Soc. 105, 785–802.
  • Nieuwstadt, F. T. M. and Tennekes, H. 1981. A rate equation for the nocturnal boundary-layer height. J. Atmos. Sci. 38, 1418–1428.
  • Niiler, P. P. 1975. Deepening of the wind-mixed layer. J. Mar. Res. 33, 405–422.
  • Pollard, R. T., Rhines, P. B. and Thompson, R. O. R. Y. 1973. The deepening of the wind-mixed layer. Geophys. Fluid. Dyn. 3, 381–404.
  • Resnyansky, Yu. D. 1975. Parameterization of the integral turbulent energy dissipation in the upper quasihomogeneous layer of the ocean. lzv. Acad. Sci. USSR, Atmos. Ocean. Phys. 11,453–457.
  • Tennekes, H. 1973. A model for the dynamics of the inversion above a convective boundary layer. J. Atmos. Sci. 30, 558–567.
  • Tennekes, H. 1975. Reply to comments on “A model for the dynamics of the inversion above a convective boundary layer”. J. Atmos, Sci. 32, 992–995.
  • Tennekes, H. and Driedonks, A. G. M. 1981. Basic entrainment equations for the atmospheric boundary layer. Boundary-layer Meteorol. 20, 515–531.
  • Wyngaard, J. C. and Brost, R. A. 1984. Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci. 41, 102–112.
  • Zeman, O. 1979. Parameterization of the dynamics of stable boundary layers and nocturnal jets. J. Atmos. Sci. 36, 792–804.
  • Zeman, O. and Lumley. J. L. 1976. Modelling buoyancy driven mixed layers. J. Atmos. Sci. 33, 1974–1988.
  • Zeman, O. and Tennekes, H. 1977. Parameterization of the turbulent energy budget at the top of the daytime atmospheric boundary layer. J. Atmos. Sci. 34, 111–123.
  • Zilitinkevich, S. S. 1975. Comments on “A model for the dynamics of the inversion above a convective boundary layer”. J. Atmos. Sci. 32, 991–995.