61
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

A numerical study of moist stratified flows over isolated topography

&
Pages 481-499 | Received 07 Oct 1999, Accepted 13 Nov 2000, Published online: 15 Dec 2016

References

  • Bacmeister, J. T. and Pierrehumbert, R. T. 1988. On high-drag states of nonlinear stratified flow over an obstacle. J. Atmos. Sci. 45, 63–80.
  • Baines, P. G. and Hoinka, K. P. 1985. Stratified flow over two-dimensional topography in fluid of infinite depth: a laboratory simulation. J. Atmos. Sci. 42, 1614–1630.
  • Barcilon, A. and Fitzjarrald, J. 1985. A non linear steady model for moist hydrostatic mountain waves. J. Atmos. Sci. 42, 58–67.
  • Barcilon, A., Jusem, J. C. and Drazin, P. G. 1979. On the two-dimensional hydrostatic flow of a stream of moist air over a mountain ridge. Geophys. Astrophys. Fluid Dyn. 13, 125–140.
  • Bauer, M. H. 1997. Three-dimensional numerical simula-tions of the influence of the horizontal aspect ratio on flow over and around a mesoscale mountain. PhD thesis, University of Innsbruck, Austria.
  • Buzzi, A. and Malguzzi, P. 1997. The Bolam III model: recent improvements and results. MAP Newsletters 7, 98–99.
  • Buzzi, A. and Foschini, L. 1998. Numerical experiments on the dynamical effects of latent heat exchanges and topographic forcing in MAP case studies. MAP Newsletters 9, 26–27.
  • Buzzi, A. and Foschini, L. 2000. Mesoscale meteoro-logical features associated with heavy precipitation in the Southern Alpine Region. Meteorol. Atmos. Phys. 72, 131–146.
  • Buzzi, A., Fantini, M., Malguzzi, P. and Nerozzi, P. 1994. Validation of a limited area model in cases of Mediter-ranean cyclogenesis: surface fields and precipitation scores. Meteorol. Atmos. Phys. 53, 137–153.
  • Buzzi, A., Foschini, L. and Malguzzi, P. 1998a. The Piedmont flood of 1994: an analysis of the concurrent meteorological processes based on systematic numer-ical experimentation. Proceedings of the 25th Interna-tional Conference on Alpine meteorology, Torino, Italy, 14-19 September, Regione Piemonte, 8-12.
  • Buzzi, A., Tartaglione, N. and Malguzzi, P. 1998b. Numerical simulations of the 1994 Piedmont flood: role of orography and moist processes. Mon. Wea. Rev. 126, 2369–2383.
  • Cotton, W. R. and Anthes, R. A. 1989. Storm and cloud dynamics. Academic Press, New York, 883 pp.
  • Crook, N. A., Clark, T. L. and Moncrieff, M. W. 1990. The Denver cyclone. Part I: Generation in low Froude number flow. J. Atmos. Sci. 47, 2725–2742.
  • Davies, H. C. 1976. A lateral boundary formulation for multilevel prediction models. Q. J. Roy. Meteor. Soc. 102, 405–418.
  • Drazin, P. G. 1961. On the steady flow of a fluid of variable density past an obstacle. Tellus 13, 239–251.
  • Durran, D. R. and Klemp, J. B. 1982a. The effects of moisture on trapped lee waves. J. Atmos. Sci. 39, 2490–2506.
  • Durran, D. R. and Klemp, J. B. 1982b. On the effects of moisture on Brunt-Väisäla frequency. J. Atmos. Sci. 39, 2152–2158.
  • Durran, D. R. and Klemp, J. B. 1983. A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev. 44, 2341–2361.
  • Fraser, A. B., Easter, R. C. and Hobbes, P. V. 1973. A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain. Part I: Airflow model. J. Atmos. Sci. 30, 801–812.
  • Georgelin, M., Bougeault, P., Black, T., Brzovic, N., Buzzi, A., Calvo, J., Cass, V., Desgagné, M., El-Khatib, R., Geleyn, J. F., Holt, T., Hong, S.-Y., Kato, T., Katzfey, J., Kurihara,K., Lacroix, B., Latourette, F., Lemaitre, Y., Mailhot, J., Majewski, D., Malguzzi, P., Masson, V., Mcgregor, J., Minguzzi, E., Paccagnella, T. and Wilson, C. 2000. The second COMPARE exercise: a model intercomparison using a case of a typical mesoscale orographic flow, the PYREX I0P3. Q. J. Roy. Meteor. Soc. 126, 991–1030.
  • Houze, R. A. 1993. Cloud dynamics. Academic Press, New York, 573 pp.
  • Hunt, J. CR.., Feng, Y., Linden, P. F., Greenslade, M. D. and Mobbs, S. D. 1997. Low-Froude-number stable flows past mountains. II Nuovo Cimento 20, 261–272.
  • Jusem, J. C. and Barcilon, A. 1985. Simulations of moist, mountain waves with an anelastic model. Geophys. Astrophys. Fluid Dyn. 33, 259–276.
  • Katzfey, J. J. 1995. Simulations of extremes New Zealand precipitation events. Part II: Mechanism of precipita-tion development. Mon. Wea. Rev. 123, 755–775.
  • Klemp, J. B. and Lilly, D. K. 1978. Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci. 35, 78–107.
  • Lalas, D. P. and Einaudi, F. 1974. On the correct use of the wet adiabatic lapse rate in stability criteria of a saturated atmosphere. J. Appl. Meteor. 13, 318–324.
  • Lehmann, R. 1993. On the choice of relaxation coeffi-cients for Davies’ lateral boundaries scheme for regional weather prediction models. Meteorol. Atmos. Phys. 52, 1–14.
  • Lilly, D. K. and Durran, D. R. 1983. Stably stratified moist airflow over mountainous terrain. Proceedings of the 1st Sino-Am. Workshop on Mountain meteorology, Reiter, E. R., Baozhen, Z. and Yongfu, Q., Eds., Science Press, Beijing, and Amer. Meteor. Soc, Boston, 569-608.
  • Malguzzi, P. and Tartaglione, N. 1999. An economical second order advection scheme for explicit numerical weather prediction. Q. J. Roy. Meteor. Soc. 125, 2291–2303.
  • Miglietta, M. M. and Buzzi, A. 1999. Study of moist flow over an isolated 3D topography with a mesoscale model. MAP Newsletter 11, 18–19.
  • Miranda, P. M. A. and James, I. N. 1992. Non-linear three-dimensional effects on gravity-wave drag: split-ting flow and breaking waves. Q. J. Roy. Meteor. Soc. 118, 1057–1081.
  • Palm, E. 1953. On the formation of surface wind over a corrugated bed and on the development of mountain waves. Astrophysica Norvegica 5, 61.
  • Pierrehumbert, RT.. and Wyman, B. 1985. Upstream effects of mesoscale mountains. J. Atmos. Sci. 42, 977–1003.
  • Rotunno, R. and Smolarkiewicz, P. K. 1991. Further results on lee vortices in low-Froude-number flow. J. Atmos. Sci. 48, 2204–2211.
  • Schär, C. and Durran, D. R. 1997. Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J. Atmos. Sci. 54, 534–554.
  • Schultz, P. 1995. An explicit cloud physics parameteriz-ation for operational numerical weather prediction. Mon. Wea. Rev. 123, 3331–3343.
  • Smith, R. B. 1979. The influence of mountains on the atmosphere. Adv. Geophys. 21, 87–230.
  • Smith, R. B. 1980. Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus 32, 348–364.
  • Smith, R. B. 1982. A differential advection model of orographic rain. Mon. Wea. Rev. 110, 306–309.
  • Smith, R. B. 1989a. Hydrostatic airflow over mountains. Adv. Geophys. 31, 1–41.
  • Smith, R. B. 1989b. Mountain-induced stagnation points in hydrostatic flow. Tellus 41A, 270–274.
  • Smith, R. B. and GronAs, S. 1993. Stagnation points and bifurcation in 3-D mountain airflow. Tellus 45A, 28–43.
  • Smith, R. B. and Lin, Y. L. 1982. The addition of heat to a stratified airstream with application to the dynamics of orographic rain. Q. J. Roy. Meteor. Soc. 108, 353–378.
  • Smolarkiewicz, P. K. and Rotunno, R. 1989. Low Froude number past three-dimensional obstacles. Part I: baro-clinically generated lee vortices. J. Atmos. Sci. 46, 1154–1164.
  • Smolarkiewicz, P. K. and Rotunno, R. 1990. Low Froude number past three-dimensional obstacles. Part II: upwind flow reversal zone. J. Atmos. Sci. 47, 1498–1511.