350
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Formation of tropical storms in an atmospheric general circulation model

&
Pages 56-67 | Received 20 Jan 2003, Accepted 26 May 2003, Published online: 15 Dec 2016

References

  • Bengtsson, L. 2001. Hurricane threats. Science 293, 440–441.
  • Bengtsson, L., Böttger, H. and Kanamitsu, M. 1982. Simulation of hurricane-type vortices in a general circulation model. Tellus 34, 440–457.
  • Bengtsson, L., Botzet, M. and Esh, M. 1995. Hurricane-type vortices in a general circulation model. Tellus 47A, 175–196.
  • Bister, M. and Emanuel, K. A. 1997. The genesis of hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Re v. 125, 2662–2682.
  • Broccoli, A. J. and Manabe, S. 1990. Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys. Rev. Lett. 17, 1917–1920.
  • Camargo, S. J. and Zebiak, S. E. 2002a. Improving the detection and tracking of tropical storms in Atmospheric General Circulation Models. Wea. Forecasting 17, 1152— 1162.
  • Camargo, S. J. and Zebiak, S. E. 2002b. Variability of tropical storms in Atmospheric General Circulation Models.Proc. 25th Conf on Hurricanes and Tropical Metereology, American Metereological Society, San Diego, CA, 148-149.
  • Chan, J. C. L. and Kwok, R. H. E 1999. Tropical cyclone genesis in a global numerical weather prediction model. Mon. Wea. Re v. 127, 611–624.
  • Chan, J. C. L., Shi, J. E. and Lam, C. M. 1998. Seasonal forecasting of tropical cyclone activity over the western North Pacific and the South China Sea. Wea. Forecasting 13, 997–1004.
  • Chen, T., Weng, S. R, Yamazalci, N. and Kiehne, S. 1998. Variation in the tropical cyclone activity over the western North Pacific. Mon. Wea. Re v. 126, 1080–1090.
  • Chia, H. H. and Ropelewski, C. F. 2002. The interannual variability in the genesis location of tropical cyclones in the Northwest Pacific. J. Climate 15, 2934–2944.
  • Emanuel, K. A. 1989. The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sc i. 46, 3431–3456.
  • Emanuel, K. A. 1995. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sc i. 52, 3969–3976.
  • Frank, W. M. 1977. The structure and energetics of tropical cyclone I. Storm structure. Mon. Wea. Re v. 105, 1119–1135.
  • Goddard, L., Mason, S. J., Zebialc, S. E., Ropelewski, C. F., Basher, R. E. and Cane, M. A. 2001. Current approaches to seasonal to interannual climate predictions. Int. J. Climatol. 21, 1111–1152.
  • Gray, W. M. 1979. Metereology over the tropical oceans. In: Hurricanes: Their formation, structure and likely role in the tropical circulation (ed. D. B. Shaw). R. Meteorol. Soc., London, 155-218.
  • Gray, W. M., Landsea, C. W., Mielke, Jr., P. W. and Berry, K. J. 1993. Predicting Atlantic basin seasonal tropical cyclone activity by 1 August.Wea. Forecasting 8, 73–86.
  • Haarsma, R. J., Mitchell, J. E B. and Senior, C. A. 1993. Tropical disturbances in a GCM. Clim. Dynam. 8, 247–257.
  • JTWC, 2002. Joint Typhoon Warning Center Tropical Cyclone Best Track Data Site. Available on line at http://www.npmoc.navy.mil.
  • Krishnamurti, T. N. 1988. Some recent results on numerical weather prediction over the tropics. Ausl. Meteorol. Mag. 36, 141–170.
  • Krishnamurti, T. N. and Oosterhof, D. 1989. Prediction of the life cycle of a supertyphoon with a high-resolution global model. Bull. Am. Meteorol. Soc. 70, 1218–1230.
  • Krishnamurti, T. N., Oosterhof, D. and Dignon, N. 1989. Hurricane prediction with a high resolution global model. Mon. Wea. Re v. 117, 631–669.
  • Lander, M. A. 1994. An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Re v. 122, 636— 651.
  • Landman, W. A., Seth, A. and Camargo, S. J. 2002. The effect of regional climate model domain choice on the simulation of tropical cyclone-like vortices in the southwestern indian ocean.IRI Technical Report 02–06, International Research Institute for Climate Prediction, Palisades, NY, 31 pp.
  • Manabe, S., Holloway, J. L. and Stone, H. M. 1970. Tropical circulation in a time-integration of a global model of the atmosphere. J. Atmos. Sc i. 27, 580–613.
  • Mason, S. J., Goddard, L., Graham, N. E., Yulaeva, E., Sun, L. Q. and Arkin, P. A. 1999. The WI seasonal climate prediction system and the 1997/98 El Niño event. Bull. Am. Meteorol. Soc. 80, 1853–1873.
  • McBride, J. L. 1981a. Observational analysis of tropical cyclone formation. Part I: Basic description of data sets. J. Atmos. Sc i. 38, 1117–1131.
  • McBride, J. L. 1981b. Observational analysis of tropical cyclone formation. PartBudget analysis. J. Atmos. Sc i. 38, 1152–1166.
  • McBride, J. L. and Zehr, R. 1981. Observational analysis of tropical cyclone formation. Part Comparison of non-developing versus non-developing Systems. J. Atmos. Sc i. 38, 1132–1151.
  • Neelin, J. D. and Held, I. M. 1987. Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Re v. 115, 3–12.
  • Nicholls, N. 1992. Recent performance of a method for forecasting Australian seasonal tropical cyclone activity. Aust. Meteorol. Mag. 40, 105–110.
  • Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Dümenil, L. Esch, M., Giorgetta, M., Schlese, U. and Schulzweida, U. 1996. The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Technical Report 218, Max-Planck Institute for Meteorology, Hamburg, Germany, 90 pp.
  • Rotunno, R. and Emanuel, K. A. 1987. An air—sea interaction theory for tropical cyclones. Part Evolutionary study using a non-hydrostatic axisymmetric model. J. Atmos. Sc i. 44, 542–561.
  • Ryan, B. E, Watterson, I. G. and Evans, J. L. 1992. Tropical cyclone frequencies inferred from Gray’s yearly genesis parameter: Validation of GCM tropical climate. Geophys. Res. Lett. 19, 1831–1834.
  • Thorncroft, C. and Pytharoulis, I. 2001. A dynamical approach to seasonal prediction of Atlantic tropical cyclone activity. Wea. Forecasting 16, 725–734.
  • Tsutsui, J. I. and Kasahara, A. 1996. Simulated tropical cyclones using the National Center for Atmospheric Research community climate model. J. Geophys. Res. 101, 15 013–15 032.
  • Vitart, F. 1998. Tropical storm interannual and interdecadal variability in an ensemble of GCM integrations. Ph.D. Thesis, Princeton University, 387 pp.
  • Vitart, F. and Anderson, J. L. 2001. Sensitivity of Atlantic tropical storm frequency to ENSO and interdecadal variability of SSTs in an ensemble of AGCM integrations. J. Climate 14, 533–545.
  • Vitart, E, Anderson, J. L. and Stern, W. F. 1997. Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate 10, 745–760.
  • Vitart, F., Anderson, J. L. and Stern, W. F. 1999. Impact of large-scale circulation on tropical storm frequency, intensity and location, simulated by an ensemble of GCM Integrations. J. Climate 12, 3237–3254.
  • Vitart, F. D. and Stockdale, T. N. 2001. Seasonal forecasting of tropical storms using coupled GCM integrations. Mon. Wea. Re v. 129, 2521–2537.
  • Wang, B. and Chang, J. C. L. 2002. How strong ENSO events affect tropical storm activity over the Western North Pacific. J. Climate 15, 1643–1658.
  • Watterson, I. G., Evans, J. L. and Ryan, B. F. 1995. Seasonal and interannual variability of tropical cyclogenesis: Diagnostics from large-scale fields. J. Climate 8, 3052–3066.
  • Wu, G. and Lau, N. C. 1992. A GCM Simulation of the relationship between tropical storm formation and ENSO. Mon. Wea. Re v. 120, 958–977.
  • Zehr, R. M. 1992. Tropical cyclogenesis in the Western North Pacific. NOAA Technical Report NESDIS 61, NOAA, Washington, D.C., 181 pp.