514
Views
1
CrossRef citations to date
0
Altmetric
Dynamic Meteorology

Dynamical system properties of an axisymmetric convective tropical cyclone model

&
Article: 22456 | Received 25 Jul 2013, Accepted 13 Jan 2014, Published online: 12 Feb 2014

References

  • Bister M , Emanuel K. A . Dissipative heating and hurricane intensity. Meteorol. Atmos. Phys. 1998; 65: 233–240.
  • Black A. K , Ásaro E. A. D , Drennan W. M , French J. R , Niiler P. P , co-authors . Air–sea exchange in hurricanes. Synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bull. Am. Meteorol. Soc. 2007; 88: 357–374.
  • Blackadar A. K . The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res. 1962; 67: 3095–3102.
  • Bryan G. H , Fritsch J. M . A benchmark simulation for moist nonhydrostatic numerical models. Mon. Weather Rev. 2002; 130: 2917–2928.
  • Bryan G. H , Rotunno R . Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci. 2009a; 66: 3042–3060.
  • Bryan G. H , Rotunno R . The influence of near-surface, high-entropy air in hurricane eyes on maximum hurricane intensity. J. Atmos. Sci. 2009b; 66: 148–158.
  • Bryan G. H , Rotunno R . The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Weather Rev. 2009c; 137: 1770–1789.
  • Camargo S. J , Ting M , Kushnir Y . Influence of local and remote SST on North Atlantic tropical cyclone potential intensity. Clim. Dynam. 2013; 40: 1515–1529.
  • Camp J. P , Montgomery M. T . Hurricane maximum intensity: past and present. J. Atmos. Sci. 2001; 129: 1704–1717.
  • Emanuel K. A . An air–sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J. Atmos. Sci. 1986; 43: 585–604.
  • Emanuel K. A . The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci. 1989; 46: 3431–3456.
  • Emanuel K. A . Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci. 1995; 52: 3969–3976.
  • Emanuel K. A , Solomon S , Folini D , Davies S , Cagnazzo C . Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J. Clim. 2013; 26: 2288–2301.
  • Fairall C. W , Bradley E. F , Hare J. E , Grachev A. A , Edson J. B . Bulk parameterization of air–sea fluxes: updates and verification for the COARE algorithm. J. Clim. 2003; 16: 571–591.
  • Frisius T , Hasselbeck T . The effect of latent cooling processes in tropical cyclone simulations. Q. J. Roy. Meteorol. Soc. 2009; 135: 1732–1749.
  • Frisius T , Wacker U . Das massenkonsistente axialsymmetrische Wolkenmodell HURMOD. Deutscher Wetterdienst, Arbeitsergebnisse. 2007; 85: 42.
  • Gray W. M . On the balance of forces and radial accelerations in hurricanes. Q. J. Roy. Meteorol. Soc. 1962; 88: 430–458.
  • Gray W. M , Shaw D. B . Hurricanes: their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans. 1979; Bracknell, Berkshire: Royal Meteorological Society. 155–218.
  • Hill K. A , Lackmann G. M . Influence of environmental humidity on tropical cyclone size. Mon. Weather Rev. 2009; 137: 3294–3315.
  • Holland G. J . An analytic model of the wind and pressure profiles in hurricanes. Mon. Weather Rev. 1980; 108: 1212–1218.
  • Kepert J. D . Slab- and height-resolving models of the tropical cyclone boundary layer. Part I: comparing the simulations. Q. J. Roy. Meteorol. Soc. 2010; 136: 1686–1699.
  • Kepert J. D . Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Weather Rev. 2012; 140: 1427–1445.
  • Knaff J. A , DeMaria M , Sampson C. R , Peak J. E , Cummings J , Schubert W. H . Upper oceanic energy response to tropical cyclone passage. J. Clim. 2013; 26: 2631–2650.
  • Mei W , Pasquero C . Spatial and temporal characterization of sea surface temperature response to tropical cyclones. J. Clim. 2013; 26: 3745–3765.
  • Ooyama K . Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci. 1969; 26: 3–40.
  • Ooyama K. V . Conceptual evolution of the theory and modelling of the tropical cyclone. J. Meteorol. Soc. Jpn. 1982; 60: 369–379.
  • Persing J , Montgomery M. T . Hurricane superintensity. J. Atmos. Sci. 2003; 60: 2349–2371.
  • Rotunno R , Emanuel K . An air–sea interaction theory for tropical cyclones. Part II: evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci. 1987; 44: 542–561.
  • Schönemann D , Frisius T . Dynamical system analysis of a low-order tropical cyclone model. Tellus A. 2012; 64: 15817.
  • Swanson K. L . Nonlocality of Atlantic tropical cyclone intensities. Geochem. Geophys. Geosyst. 2008; 9: Q04V01.
  • Tang B , Emanuel K . Midlevel ventilations constraint on tropical cyclone intensity. J. Atmos. Sci. 2010; 67: 1817–1830.
  • Tang B , Emanuel K . Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J. Atmos. Sci. 2012; 69: 2394–2413.
  • Wada A , Usui N , Sato . Relationship of maximum tropical cyclone intensity to sea surface temperature and tropical cyclone heat potential in the North Pacific Ocean. J. Geophys. Res. 2012; 117: D11118.
  • Wang Y . How do outer spiral rainbands affect tropical cyclone structure and intensity?. J. Atmos. Sci. 2009; 66: 1250–1273.
  • Willoughby H. E , Jin H.-L , Lord S. J , Piotrowicz J. M . Hurricane structure and evolution as simulated by an axisymmetric, nonhydrostatic numerical Model. J. Atmos. Sci. 1984; 41: 1169–1186.
  • Xu J , Wang Y . Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Weather Rev. 2010; 128: 4135–4157.
  • Yanase W , Satoh M , Taniguchi H , Fujinami H . Seasonal and intraseasonal modulation of tropical cyclogenesis environment over the Bay of Bengal during the extended summer monsoon. J. Clim. 2012; 25: 2914–2930.
  • Yu J , Wang Y , Hamilton K . Response of tropical cyclone potential intensity to a global warming scenario in the IPCC AR4 CGCMs. J. Clim. 2010; 23: 13541373.
  • Zeng Z , Chen L , Wang Y . An observational study of environmental dynamical control of tropical cyclone intensity in the Atlantic. Mon. Weather Rev. 2008; 136: 3307–3322.
  • Zhang J. A , Marks F. D , Montgomery M , Lorsolo S . An estimation of turbulent characteristics in the low-level region of intense hurricanes Allen (1980) and Hugo (1989). Mon Weather Rev. 2011; 139: 1447–1462.
  • Zhang J. A , Montgomery M . Observational estimates of the horizontal eddy diffusivity and mixing length in the low-level region of intense hurricanes. J. Atmos. Sci. 2012; 69: 1306–1316.
  • Zhao M , Held I. M . TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late-twenty-first century. J. Clim. 2012; 25: 2995–3009.
  • Zhao M , Held I. M , Lin S.-J , Vecchi G. A . Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Clim. 2009; 22: 6653–6678.