88
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Application of an atmospheric tracer model to high southern latitudes

, &
Pages 358-370 | Received 27 Aug 1991, Accepted 11 Feb 1992, Published online: 18 Jan 2017

References

  • Beardsmore, D.J., Pearman, G. I. and O'Brien, R. C. 1984. The CSIRO (Australia) Atmospheric carbon dioxide monitoring program: surface data. CSIRO, Div. of Atmospheric Res. Tech. Paper No. 6.
  • Enting, I. G. and Mansbridge, J. V. 1991. Latitudinal distribution of sources and sinks of CO2: Results of an inversion study. Tellus 43B, 156–170.
  • Fung, I., Prentice, K., Matthews, E., Lerner, J. and Russell, G. 1983. Three-dimensional tracer model study of atmospheric CO2: response to seasonal exchanges with the terrestrial biosphere. J. Geophys. Res. 88, 1281–1294.
  • Fung, I. Y. 1986. Analysis of the seasonal and geographical patterns of atmospheric CO2 distributions with a three-dimensional tracer model. In: The changing carbon cycle: a global analysis (ed. J. Trabalka and D. Reichle). Springer-Verlag, 459–473.
  • Gammon, R. H., Sundquist, E. T. and Fraser, P. J. 1985. 3. History of carbon dioxide in the atmosphere. In: Atmospheric carbon dioxide and the global carbon cycle (ed. J. Trabalka). US Dept. of Energy. DOE/ER-0239, 25–62.
  • Hansen, J., Russell, G., Lacis, A., Fung, I., Rind, D. and Stone, P. 1985. Climate response times: dependence on climate sensitivity and ocean mixing. Science 229, 857–859.
  • Heimann, M. and Keeling, C. D. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds: (2) Model description and simulated tracer experiments. Max-Planck-Institut far Meteorologic, Report No. 33. Hamburg, Germany.
  • Hoskins, B. J. and Simmons, A. J. 1975. A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc. 101, 637–655.
  • Jacob, D. J., Prather, M. J., Wofsy, S. C. and McElroy, M. B. 1987. Atmospheric Distribution of 85Kr Simulated With a General Circulation Model. J. Geophys. Res. 92, 6614–6626.
  • Manabe, S., Smagorinsky, J. and Strickler, R. F. 1965. Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Wea. Rev. 93, 769–798.
  • McAvaney, B. J., Bourke, W. and Puri, K. 1978. A global spectral model for simulation of the general circulation. J. Atmos. ScL 35, 1557–1583.
  • Murray, R. J. and Simmonds, I. 1991. A numerical scheme for tracking cyclone centres from digital data. Part II: Application to January and July GCM simulations. Aust. Met. Mag. 39, 167–180.
  • Prather, M., McElroy, M., Wofsy, S., Russell, G. and Rind, D. 1987. Chemistry of the Global Troposphere: Fluorocarbons as Tracers of Air Motion. J. Geophys. Res. 92, 6579–6613.
  • Pudykiewicz, J. 1989. Simulation of the Chernobyl dispersion with a 3-D hemispheric tracer model. Tellus 41B, 391–412.
  • Schlesinger, M. E. 1986. Equilibrium and transient climatic warming induced by increased atmospheric CO2. Climate Dynamics I, 35–51.
  • Simmonds, I. 1985. Analysis of the “spinup” of a general circulation model. J. Geophys. Res. 90, 5637–5660.
  • Simmonds, I., Trigg, G. and Law, R. 1988. The Climatology of the Melbourne University General Circulation Model. Pub. No. 31, Department of Meteorology, University of Melbourne, 67 pp. [NTIS PB 88 227491.]
  • Simmonds, I. 1990. Improvements in General Circulation Model performance in simulating Antarctic climate. Antarctic Science 2, 287-300. (Note Correction in vol. 3, p. 230.)
  • Simmonds, I., Indusekharan, P. and Murray, R. J. 1990. A comparison of modelled and observed daily variability in the southern extratropics. Aust. Met. Mag. 38, 261–270.
  • Tans, P. P., Conway, T. J. and Nakazawa, T. 1989. Latitudinal Distribution of the Sources and Sinks of Atmospheric Carbon Dioxide Derived From Surface Observations and an Atmospheric Transport Model. J. Geophys. Res. 94, 5151–5172.
  • Tans, P. P., Fung, I. Y. and Takahashi, T. 1990. Observational constraints on the global atmospheric CO2 budget. Science 247, 1431–1438.
  • Williamson, D. L. 1988. The effect of vertical finite difference approximations on simulations with the NCAR community climate model. J. Climate 1, 40–58.