153
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

A globally aggregated reconstruction of cycles of carbon and its isotopes

, &
Pages 583-600 | Received 30 Nov 1995, Accepted 03 May 1996, Published online: 18 Jan 2017

References

  • Andres, R. J., Marland, G. and Bischof, S. 1996. The carbon dioxide emissions from fossil fuel combustion and cement manufacture 1751-1991 and an estimate of their isotopic composition and latitudinal distribution. In: The carbon cycle, ed. T. M. Wigley. Cambridge University Press, in press.
  • Bacastow, R. and Keeling, C. D. 1973. Atmospheric carbon dioxide and radiocarbon on the natural carbon cycle. In: Carbon and the biosphere, ed. G. M. Woodwell and E. V. Pecan, pp. 86-135, US Atomic Energy Commission.
  • Bauer, E. 1979. A catalog of perturbing influences on stratospheric ozone, 1955-1975. J. Geophys. Res. 84, 6929–6940.
  • Broecker, W. C. and Olson, E. A. 1959. Lamont radio-carbon measurements VI. American Journal of Science Radiocarbon Supplement 1, 111–132.
  • Broecker, W. S. and Peng, T.-H. 1994. Stratospheric contribution to the global bomb radiocarbon invent-ory: model versus observation. Global Biogeochemical Cycles 8, 377–384.
  • Broecker, W. S., Peng, T.-H. and Engh, R. 1980. Modeling the carbon system. Radiocarbon 22, 565–580.
  • Broecker, W. S., Peng, T.-H., Ostlund, G. and Stuiver, M. 1985. The distribution of bomb radiocarbon in the ocean. J. Geophys. Res. 90, 6953–6970.
  • Broecker, W. S. and Peng, T. H. 1982. Tracers in the sea. Eldegio Press, Lamont-Doherty Geological Observat-ory. 691 pp.
  • Broecker, W. S., Sutherland, S., Smethie, W., Peng, T.-H. and Ostlund, G. 1995. Oceanic radiocarbon: Separa-tion of the natural and bomb components. Global Biogeochemical Cycles 9, 263–288.
  • Cias, P., Tans, P. P., Trolier, M., White, J. W. C. and Francey, R. J. 1995. A large Northern Hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science 269, 1098–1102.
  • Craig, H. 1957. The Natural distribution of radiocarbon and the exchange time of carbon dioxide between atmosphere and sea. Tellus 9, 1–17.
  • Druffel, E. M. and Benavides, L. M. 1986. Input of excess CO2 to the surface ocean based on 13C/12C ratios in a banded Jamaican sclerosponge. Nature 321, 58–61.
  • Druffel, E. M. and Linick, T. W. 1978. Radiocarbon in annual coral rings of Florida. Geophys. Res. Let. 5, 913–916.
  • Druffel, E. M. and Suess, H. E. 1983. On the radiocarbon record in banded corals. Geophys. Res. Let. 88, 1271–1280.
  • Duffy, P., and Caldeira, K. 1995. Three dimensional model calculation of ocean uptake of bomb 14C and implications for the global budget of bomb 14C. Global Biogeochemical Cycles 9, 373–375.
  • Duffy, P., Amthor, J. C., Caldeira, K., Connell, P., Kinnison, D. E., Southon, J. and Wuebbles, D. J. 1995. The global budget of bomb radiocarbon. Lawrence Livermore National Laboratory, UCRL-JC-120675, National Technical Information Service, US Dept. of Commerce, 5285 Port Royal Rd, Springfield, VA 2261, USA.
  • Enting, I. G. and Pearman, G. I. 1987. Description of a one-dimensional carbon cycle model calibrated by the techniques of constrained inversion. Tellus 39B, 459–476.
  • Enting, I. G., Wigley, T. M. L. and Heimann, M., Eds. 1994. Future emissions and concentrations of carbon dioxide: key ocean/atmosphere/land analyses, 120 pp. Australia, CSIRO, 1994.
  • Ergin, M., Harkeness, D. D. and Walton, A. 1970. Uppsala radiocarbon measurements X. Radiocarbon 12, 281–284.
  • Friedli, H., Lotscher, H., Oeschger, H., Siegenthaler, U. and Stauffer, B. 1986. Ice core record of the 13C/12C ratio of atmospheric carbon dioxide in the past two centuries. Nature 324, 237–238.
  • Harvey, L. D. D. 1989. Effect of model structure on the response of terrestrial biosphere models to CO2 and temperature increases. Global Biogeochemical Cycles 3, 137–153.
  • Hesshaimer, V., Heimann, M. and Levin, I. 1994. Radiocarbon evidence for a smaller ocean carbon dioxide sink than previously believed. Nature 370, 201–203.
  • Intergovernmental Panel on Climate Change (IPCC). 1990. Climate change: the IPCC scientific assessment, eds. Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. Cambridge University Press, Cambridge.
  • IPCC (Intergovernmental Panel on Climate Change). 1992. Climate change 1992, The supplementary report to the IPCC scientific assessment, eds. Houghton, J. T., Callander, B. A., and Varney, S. K. Cambridge University Press, Cambridge.
  • IPCC (Intergovernmental Panel on Climate Change). 1996. Climate change 1995, the science of climate change, eds. Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A. and Maskell, K. Cambridge University Press.
  • Jain, A. K., Kheshgi, H. S., Caldeira, K., Hoffert, M. I. and Wuebbles, D. J. 1994a. Evaluation of PC of atmospheric carbon dioxide with a schematic carbon cycle model. American Geophysical Union Fall Meeting, EOS Supplement 75, 152–153.
  • Jain, A. K., Kheshgi, H. S. and Wuebbles, D. J. 1994b. Integrated science model for assessment of climate change. 94-TP59. 08, Air and Waste Management Association, also Lawrence Livermore National Laboratory, UCRL-JC-116526, National Technical Information Service, US Dept. of Commerce, 5285 Port Royal Rd, Springfield, VA 2261.
  • Jain, A. K., Kheshgi, H. S., Hoffert, M. I. and Wuebbles, D. J. 1995. Distribution of radiocarbon as a test of global carbon cycle models. Global Biogeo-chemical Cycles 9, 153–166.
  • Johnston, H. S. 1989. Evaluation of excess carbon 14 and strontium 90 data for suitability to test two-dimensional stratospheric models, J. Geophys. Res. 94, 18485–18493.
  • Joos, F. 1994. Imbalance in the budget. Nature 370, 181–182.
  • Joos, F., Bruno, M., Fink, R., Siegenthaler, U., Stocker, T., Le Quere, C. and Sarmiento, J. L. 1996. An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. Tellus 48, (in press).
  • Keeling, C. D. 1973. The carbon dioxide cycle: Reservoir models to depict the exchange of atmospheric carbon dioxide with the oceans and land plants. In: Chemistry of the lower atmosphere, ed. S. I. Rasool, pp. 251–329. Plenum.
  • Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P., M. Heimann, Mook, W. G. and Roeloffzen, H. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds. 1. Analysis of observational data. In: Aspects of climate variability in the Pacific and Western Americas, ed. D. H. Peterson, pp. 165–236. Am. Geophys. Union.
  • Keeling, C. D., Bacastow, R. B. and Tans, P. 1980. Predicted shift in the 13C/12C ratio of atmospheric carbon dioxide. Geophys. Res. Let. 7,505–508.
  • Keeling, C. D., Mook, W. G. and Tans, P. 1979. Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277,121–123.
  • Keeling, C. D., Whorf, T. P., Wahlen, M. and Pilcht, J. V. D. 1995. Interannual extremes in the rates of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670.
  • Kheshgi, H. S., Hoffert, M. I. and Flannery, B. P. 1991. Marine biota effects on the compositional structure of the world oceans. J. Geophys. Res. 96, 4957–4969.
  • Kheshgi, H. S., Jain, A. K. and Wuebbles, D. J. 1996. Accounting for the missing carbon sink with the CO2 fertilization effect. Climatic Change 33, 31–62.
  • Kheshgi, H. S., Jain, A. K. and Wuebbles, D. J. 1995. Uncertainty in the global carbon budget derived from isotopic constraints, American Geophys. Union Fall Meeting, EOS Suppl. 76, F83.
  • Kheshgi, H. S. and White, B. S. 1996. Modeling ocean carbon cycle with a nonlinear convolution model. Tellus 48B, 3–12.
  • Kinnison, D. E. Johnston, H. S. and Wuebbles, D. J. 1994. Model study of atmospheric transport using carbon 14 and strontium as inert tracers. J. Geophys. Res. 99, 20647–20664.
  • Kroopnick, P. M. 1985. The distribution of 13C of CO2 in the world oceans. Deep-Sea Research 32, 57–84.
  • Maier-Reimer, E. 1993. Geochemical tracers in an ocean general circulation model. Preindustrial tracer distributions. Global Biogeochemical Cycles 7,645–677.
  • Maier-Reimer, E. and Hasselmann, K. 1987. Transport and storage of CO2 in the ocean. An inorganic ocean-circulation carbon cycle model. Clim. Dyn. 2, 63–90.
  • Marland, G., Andres, R. J., and Boden, T. A. 1994. Global, regional, and national CO2 emissions. In: Trends 93: A compendium of data on global change, ed. Boden, T. A., Kaiser, D. P., Sepanski, R. J. and Stoss, F. W., pp 505-584. Oak Ridge Natl. Lab, Oak Ridge, Tenn., USA, ORNL/CDIAC-65.
  • McNichol, A. P. and Druffel, E. R. M. 1992. Variability of the δ13C of dissolved inorganic carbon at a site in the north Pacific Ocean. Geochemica et Cosmochimica Acta 56, 3589–3592.
  • Mook, W. G., Koopmans, M., Carter, A. F. and Keeking, C. D. 1983. Seasonal Latitudinal and secular variations in the abundance and isotopic ratios of atmospheric carbon dioxide. J. Geophys. Res. 88, 10915–10933
  • Neftel, A., Moor, E., Oeschger, H. and Stauffer, B. 1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315, 45–47.
  • Nozaki, Y., Rye, D. M., Turekian, K. K., Dodge, R. E. 1978. A 200 year record of carbon-13 and carbon-14 variations in a Bermuda coral. Geophys. Res. Let. 5, 825–828.
  • O'Brien, K. 1979. Secular variations in the production of cosmogenic isotopes in the Earth's atmosphere. J. Geophys. Res. 84, 423–431.
  • Oeschger, H., Siegenthaler, U., Schotterer, U. and Guglemann, A. 1975. A box-diffusion model to study the carbon dioxide exchange in nature. Tellus 27, 168–192.
  • Peng, T.-H., Takahashi, T., Broecker, W. S. and Olafsson, J. 1987. Seasonal variability of carbon dioxide, nutrients and oxygen in the northern North Atlantic surface water. Tellus 39B, 439–458.
  • Prather, M. J., and Remsberg, E. E. 1993. The atmospheric effects of stratospheric aircraft. Report of the 1992 Models and Measurement Workshop (3 vol-umes). NASA Ref. Publ. 1292.
  • Quay, P. D., Tilbrook, B. and Wong, C. S. 1992. Oceanic uptake of fossil fuel CO2: Carbon-13 evidence. Science 256, 74–79.
  • Sarmiento, J. L., Orr, J. C. and Siegenthaler, U. 1992. A perturbation simulation of CO2 uptake in an ocean general circulation model. J. Geophys. Res. 97, 3621–3645.
  • Shaffer, G. and Sarmiento, J. L. 1995. Biogeochemical cycling in the global ocean 1: A new, analytical model with continuous vertical resolution and high latitude dynamics. J. Geophys. Res. 100, 2659–2672.
  • Siegenthaler, U. and Joos, F. 1992. Use of a simple model for studying oceanic tracer distributions and the global carbon cycle. Tellus 44B, 186–207.
  • Siegenthaler, U. and Milnnich, K. O. 1981. 13C/12C fractionation during CO2 transfer from air to sea. In: Carbon Cycle Modeling, SCOPE 16, ed. B. Bolin, pp. 249–257. John Wiley & Sons.
  • Siegenthaler, U. and Oeschger, H. 1987. Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus 39B, 140–154.
  • Siegenthaler, U. and Sarmiento, J. L. 1993. Atmospheric carbon dioxide and ocean. Nature 365, 119–125.
  • Stuiver, M. and Pollach, H. 1977. Discussion reporting of 14C data. Radiocarbon 19, 355–363.
  • Stuiver, M. and Quay, P. D. 1980. Changes in atmospheric 14C attributed to variable sun. Science 207, 11–19.
  • Stuiver, M. and Quay, P. D. 1981. Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth Planet. Sci. Lett. 53,349–362.
  • Suess, H. E. 1955. Radiocarbon concentration in modern wood. Science 122, 415–417.
  • Sundquist, E. T. 1985. Geological perspectives on carbon dioxide and the carbon cycle. In: The carbon cycle and atmospheric CO2: natural variations archean to present. Geophysical Monograph 32, eds. Sundquist, E. T. and Broecker, W. S. American Geophysical Union, Washington D. C.
  • Takahashi, T., Broecker, W. S. and Bainbridge, A. E. 1981. Supplement to the alkalinity and total carbon dioxide concentration in the world oceans. In: Carbon cycle modeling, SCOPE 16, ed. B. Bolin, pp. 159–200. John Wiley & Sons.
  • Tans, P. 1981a. 13C/12C of industrial CO2. In: Carbon cycle modeling, SCOPE 16, ed. B. Bolin, pp. 127–129. John Wiley & Sons.
  • Tans, P. P. 1981b. A compilation of bomb 14C data for use in global carbon cycle models. In: Carbon cycle modeling, Scope 16, ed. B. Bolin, pp. 131–158. John Wiley & Sons.
  • Tans, P. P., Fung, I. Y. and Takahashi, T. 1990. Observational constraints on the global atmospheric CO2 budget. Science 247, 1431–1438.
  • Telegadas, K. 1971. The seasonal atmospheric distribution and inventories of excess 14C from March 1955 to July 1969. Health and Safety Lab., US At. Energy Comm., Washington, D.C., Rep. 243.
  • Toggweiler, J. R., Dixon, K. and Bryan, K. 1989. Simulations of radiocarbon in a coarse resolution world ocean model (I). Distributions of bomb-produced 14C. J. Geophys. Res. 94, 8243–8264.
  • Volk, T. and Hoffert, M. I. 1985. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: The carbon cycle and atmospheric CO2: natural variations archean to present. Geophysical Monograph 32, pp. 91-110, American Geophysical Union, Washington, DC.
  • Wigley, T. M. L. 1993. Balancing the carbon budget. Implications for projections of future carbon dioxide concentration changes. Tellus 45B, 409–425.
  • Wuebbles, D. J., D. E. Kinnison, K. E. Grant, and J. Lean. 1991. The effect of solar flux variations and trace gas emissions on recent trends in stratospheric ozone and temperature. J. Geomagnetism and Geo-electricity, 43, 709–718.
  • Wuebbles, D. J. 1995. Utility of past atmospheric nuclear test data in global climate change research. The need for new analyses, produced for the US Department of Energy, USA, internal report, Dept. of Atmospheric Science, University of Illinois, Urbana, IL 61801.