48
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Small-scale patterns of sulfate aerosol climate forcing simulated with a high-resolution regional climate model

Pages 143-162 | Received 01 Feb 2001, Accepted 29 Oct 2001, Published online: 15 Dec 2016

References

  • Albrecht, B. A. 1989. Aerosols, cloud microphysics, and fractional cloudiness. Science 245, 1227–1230.
  • Barth, M. C., Rasch, P. J., Kiehl, J. T., Benkovitz, C. M. and Schwartz, S. E. 2000. Sulfur chemistry in the National Center for Atmospheric Research Commun-ity Climate Model: description, evaluation, features and sensitivity to aqueous chemistry. J. Geophys. Res. 105, 1387–1415.
  • Berge E. 1990. A regional numerical sulfur dispersion model using a meteorological model with explicit treatment of clouds. Tellus 42B, 389–407.
  • Berge, E. 1993. Coupling of wet scavenging of sulphur to clouds in a numerical weather prediction model. Tellus 45B, 1–22.
  • Benkovitz, C. M., Scholtz, M. T., Pacyna, J., Tarrason, L., Dignon, J., Voldner, E. C., Spiro, P. A., Logan, J. A. and Graedel, T. E. 1996. Global gridded inventor-ies of anthropogenic emissions of sulfur and nitrogen. J. Geophys. Res. 101, 29,239-29,253.
  • Bott, A. 1989a. A positive definite advection scheme obtained by nonlinear renormalization of the advected fluxes. Mon. Wea. Rev. 117, 1006–1015.
  • Bott, A. 1989b. Reply. Mon. Wea. Rev. 117, 2633–2636.
  • Boucher, O. and Lohmann, U. 1995. The sulfate—CCN— cloud albedo effect: a sensitivity study with two general-circulation models. Tellus 47B, 281-300.
  • Charlson, R. J., Langner, J., Rodhe, H., Leovy, C. B. and Warren, S. G. 1991. Perturbation of the northern hemi-sphereradiative balance by backscattering from anthropogenic sulfate aerosols. Tellus 4B3, 152-163.
  • Charlson, R. J., Anderson, T. L. and Rodhe, H. 1999. Direct climate forcing by anthropogenic aerosols: Quantifying the link between atmospheric sulfate and radiation. Contr. Atmos. Phys. 72, 79–94.
  • Chin, M., Savoie, D. L., Huebert, B. J., Bandy, A. R., Thornton, D. C., Bates, T. S., Quinn, P. K., Saltzman, E. S. and De Bruyn, W. J. 2000. Atmospheric sulfur cycle simulated in the global model GOCART: Com-parison with field observations and regional budgets. J. Geophys. Res. 105, 24,689-24,712.
  • Choularton, T. W., Bower, K. N., Beswick, K. M., Parkin, M. and Kaye, A. 1998. A study of the effects of cloud processing of aerosol on the microphysics of cloud. Q. J. R. Meteorol. Soc. 124, 1377–1389.
  • Chuang, C. C., Penner, J. E., Taylor, K. E., Grossman, A. S. and Walton, J. J. 1997. An assessment of the radiative effects of anthropogenic sulfate. J. Geophys. Res. 102, 3761–3778.
  • Covert, D. S., Wiedensohler, A., Aalto, P., Heintzenberg, J., McMurry, P. H. and Leck, C. 1996. Aerosol number size distributions from 3 to 500 nm diameter in the Arctic marine boundary layer during summer and autumn. Tellus 48B, 197–212.
  • Curry, J. A. 1986. Interactions among turbulence, radi-ation and microphysics in Arctic stratus clouds. J. Atmos. Sci. 43, 90–106.
  • Cuxart, J., Bougeault, P. and Redelsperger, J.-L. 2000. A turbulence scheme allowing for mesoscale and large-eddy simulations. Q. J. R. Meteorol. Soc. 126, 1–30.
  • Eerola K., Salmond D., Gustafsson N., Garcia-Moya J.-A., L6nnberg P. and Järvenoja S. 1997. A parallel version of the HIRLAM forecast model: Strategy and results. In: Making its mark (eds. Hoffman, G.-R. and Kreitz N), Proceedings of the seventh ECMWF Workshop of the use of Parallel Processors in Met-eorology. Reading, UK, November, 1996, 134–143.
  • Ekman, A. 2000., Implementation of an atmospheric sulfur scheme in the HIRLAM regional weather forecast model. Report CM-96, International Meteoro-logical Institute in Stockholm, Department of Met-eorology, Stockholm University, S-10691 Stockholm, Sweden.
  • Feichter, J. and Lohmann, U. 1999. Can a relaxation technique be used to validate clouds and sulphur species in a GCM? Q. J. R. Meteorol. Soc. 125, 1277–1294.
  • Feichter, J., Lohmann, U. and Schult, I. 1997. The atmo-spheric sulfur cycle in ECHAM-4 and its impact on the shortwave radiation. Clim. Dyn. 13, 235–246.
  • Glantz, P. and Noone, K. J. 2000. A physically based algorithm for estimating the relationship between aerosol mass and cloud droplet number. Tellus 52B, 1216–1231.
  • Hass, H., Berge, E., Ackermann, I., Jakobs, H. J., Mem-mesheimer, M. and J.-P.Tuovinen, A diagnostic com-parison of EMEP and EURAD. Model results for a wet deposition episode in July 1990. EMEP1MSC-W Report 4196, The Norwegian Meteorological Institute, Oslo, Norway, 1996.
  • Haywood, J. M. and Boucher, O. 2000. Estimates of the direct and indirect radiative forcing due to tropo-spheric aerosols: a review. Rev. Geophys. 38, 513-543.
  • Haywood, J. M., Ramaswamy, V. and Donner, L. J. 1997. A limited-area-model case study of the effects of sub-grid scale variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol. Geophys. Res. Lett. 24, 143–146.
  • Herman, G. F. and Curry, J. A. 1984. Observational and theoretical studies of solar radiation in Arctic stratus clouds. J. Appl. Meteorol. 23, 5–24.
  • Hegg, D. A. 1994. Cloud condensation nucleus-sulfate mass relationship and cloud albedo. J. Geophys. Res. 99, 25,903-25,907.
  • Hjellbrekke, A. G. and Hanssen, J. E. 1998. Data report 1996, Part 2. Monthly and seasonal summaries. NIL U/ CCC-report 2198, pp 229. The Norwegian Institute for Air Research, Lillestrom, Norway.
  • Intergovernmental Panel on Climate Change (IPCC), 1996. Climate change, 1995: the science of climate change (ed. J. T. Houghton et al), Cambridge Univer-sity Press, New York, 572 pp.
  • Jennings, S. G., Geever, M., McGovern, F. M., Francis, J., Spain, T. G. and Donaghy, T. 1997. Microphysical and physio-chemical characterization of atmospheric and continental aerosol at Mace Head. Atmos. Environ. 31, 2795–2808.
  • Jones, A. and Slingo, A. 1996. Predicting cloud-droplet effective radius and indirect sulphate aerosol forcing using a general circulation model. Q. J. R. Meteorol. Soc. 122, 1573–1595.
  • Jones, A., Roberts, D. L. and Slingo, A. 1994. A climate model study of indirect radiative forcing by anthro-pogenic sulphate aerosols. Nature 370, 450–453.
  • Kain, J. S. and Fritsch, J. M. 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 47, 2784–2802.
  • Källén, E. (ed.), 1996. HIRLAM documentation manual — System 2.5. Available from the Swedish Meteorological and Hydrological Institute, SE-60176 Norrkoping, Sweden, 240 pp.
  • Kawamoto, K., Nakajima, T. and Nakajima, T. 2001. A global determination of cloud microphysics with AVHRR remote sensing. J. Clim. 14, 2054–2068.
  • Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Williamson, D. L. and Rasch, P. J. 1998. The National Center for Atmospheric Research Community Climate Model: CCM3. J. Clim. 11 1131–1150.
  • Kiehl J. T., Schneider, T. L., Rasch, P. J. and Barth, M. C. 2000. Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmo-spheric Research. Community Climate Model, Version 3. J. Geophys. Res. 105, 1441–1457.
  • Koch, D., Jacob, D., Tegen, I., Rind, D. and Chin, M. 1999. Tropospheric sulfur simulation and sulfate direct radiative forcing in the Goddard Institute for Space Studies general circulation model. J. Geophys. Res. 104, 23,799-23,822.
  • Kotchenruther, R. A., Hobbs P. V. and Hegg, D. A. 1999. Humidification factors for atmospheric aerosols off the mid-Atlantic coast of the United States. J. Geophys. Res. 104, 2239–2251.
  • Langmann, B., Herzog, M. and Graf, H.-F. 1998. Radiat-ive forcing of climate by sulfate aerosols as determined by a regional circulation chemistry transport model. Atmos. Environ. 32, 2757–2768.
  • Lohmann, U. and Feichter, J. 1997. Impact of sulfate aerosols on albedo and lifetime of clouds: a sensitivity study with the ECHAM4 GCM. J. Geophys. Res. 102, 13,685-13,700.
  • Lohmann, U., Feichter, J., Chuang, C. C. and Penner, J. E. 1999a. Prediction of the number of cloud droplets in the ECHAM GCM. J. Geophys. Res. 104, 9169–9198.
  • Lohmann, U., Feichter, J., Chuang, C. C. and Penner, J. E. 1999b. Correction to 'Prediction of the number of cloud droplets in the ECHAM GCM. J. Geophys. Res. 104, 24,557-24,563.
  • Mahowald, N. M, Rasch, P. J., Eaton, B. E., Whittlestone, S and Prinn, R. G. 1997. Transport of 222radon to the remote troposphere using the Model of Atmospheric Transport and Chemistry and assimil-ated winds from ECMWF and the National Center for Environmental Prediction/NCAR. J. Geophys. Res. 102, 28,139-28,151.
  • Martin, G. M., Johnson, D. W. and Spice, A. 1994. The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci. 51, 1823–1842.
  • Mylona, S. 1999. EMEP emission data. Status Report 1999. EMEP/MSC-W Note 1-99, Norwegian Meteoro-logical Institute, Oslo, Norway.
  • New, M., Hulme, M. and P. Jones. Representing twentieth-century space-time climate variability, Part I. Development of a 1961-90 mean monthly terrestrial climatology. J. Clim. 12, 829-856.
  • Patterson, E. M., Kiang, C. S., Delany, A. C., Wartburg, A. F., Leslie, A. C. D. and Huebert, B. J. 1980. Global measurements of aerosols in remote continental and marine regions: Concentrations, size distributions, and optical properties. J. Geophys. Res. 85, 7361–7376.
  • Penner, J. E., Chuang, C. C. and Grant, K. 1998. Climate forcing by carbonaceous and sulfate aerosols. Clim. Dyn. 14, 839–851.
  • Pirjola, L., Laaksonen, A., Aalto, P. and Kulmala, M. 1998. Sulfate aerosol formation in the Arctic boundary layer. J. Geophys. Res. 103, 8309–8321.
  • Rasch, P. J. and Kristjánsson, J. E. 1998. A comparison of the CCM3 model climate using diagnosed and pre-dicted condensate parameterizations. J. Clim. 11, 1587–1614.
  • Rasch, P. J., Barth, M. C., Kiehl, J. T., Schwartz, S. E. and Benkovitz, C. M. 2000. A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Commun-ity Climate Model, Version 3. J. Geophys. Res. 105, 1367–1385.
  • Roeckner, E., Bengtsson, L. and Feichter, J. 1999. Transi-ent climate change simulations with a coupled atmo-sphere—ocean GCM including the tropospheric sulfur cycle. J. Clim. 12, 3004–3032.
  • Roelofs, G-J., Lelieveld, J. and Ganzeveld, L. 1998. Simu-lation of global sulfate distribution and the influence on cloud drop radii with a coupled photochemical sulfur cycle model. Tellus 50B, 224–242.
  • Rosenfeld, D. 2000. Suppression of rain and snow by urban and industrial air pollution. Science 287, 1793–1796.
  • Rummukainen, M., Räisänen, J., Bringfelt, B., Ullerstig, A., Omstedt, A., Willén, U., Hansson, U. and Jones, C. 2001. A regional climate model for northern Europe — model description and results from the downscaling of two GCM control simulations. Clim. Dyn. 5/6, 339–359.
  • Räisänen, P., Rummukainen, M. and Räisänen, J. 2000. Modification of the HIRLAM radiation scheme for use in the Rossby Centre regional atmospheric climate model. Report No. 49. Department of Meteorology, University of Helsinki, Finland.
  • Savijärvi, H. 1990. Fast radiation parameterization schemes for mesoscale and short-range forecast models. J. Appl. Meteor. 29, 437–447.
  • Simmons, A. J. and Burridge, D. M. 1981. An energy and angular momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev. 109, 758–766.
  • Twomey, S. 1974. Pollution and the planetary albedo. Atmos. Environ. 8, 1251–1256.
  • World Climatic Program, 1986. A preliminary cloudless standard atmosphere for radiation computation (ed. H. E. Gerber). Ser. Rep. 112, Int. Counc. Sci. Unions and World Meteorological Organization, Geneva, Switzerland.
  • Wyser, K., Rontu, L. and Savijärvi, H. 1999. Introducing the effective radius into a fast radiation scheme of a mesoscale model. Contr. Atmos. Phys. 72, 205–218.