205
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Annual ecosystem respiration budget for a Pinus sylvestris stand in central Siberia

, , , , , , , & show all
Pages 568-589 | Received 06 Apr 2002, Accepted 17 Jun 2002, Published online: 15 Dec 2016

References

  • Amiro, B. D. 2001. Paired tower measurements of carbon and energy fluxes following disturbance in the boreal forest. Global Change Biol. 7,253–268.
  • Amthor, J. A. and Baldocchi, D. D. 2001. Terrestrial higher plant respiration and net primary production. In: Terres-trial global productivity (eds. J. Roy, B. Saugier and H. A. Mooney) Academic Press, San Diego, 33-82.
  • Antonova G. F. and Stasova V. V. 1992. The formation of annual xylem rings in the stems of Pinus sylvestris and Larix sibirica. Lesovedenie 5, 19-27 (in Russian). Antonova G. F. and Stasova V. V. 1993. Effects of environ-mental factors on wood formation in Scots pine stems. Trees 7,214–219.
  • Arneth, A., Kelliher, F. M., Gower, S. T., Scott, N. A., Byers, J. N. and McSeveny, T. M. 1998. Environmental variables regulation soil carbon dioxide efflux following clear-cutting of a Pinus radiata. D. Don plantation. J. Geo-phys. Res. 103, 5695–5705.
  • Arneth, A., Kurbatova, J., Kolle, O., Shibistova, O., Lloyd, J., Vygodskaya, N. N. and Schulze, E.-D. 2002. Compara-tive ecosystem—atmosphere exchange of energy and mass in a European Russian and a central Siberian bog II. Inter-seasonal and interannual variability of CO2 fluxes. Tellus 54B, this issue.
  • Atkin, 0. K., Evans, J. R., Ball, M. C., Lambers, H. and Pons, T. L. 2000a. Leaf respiration in snow gum in the light and dark: interactions between temperature and irradiance. Plant Physiol. 122, 915-923.
  • Atkin, O. K., Holly, C. and Ball, M. C. 2000b. Acclimation of snow gum (Eucalyptus pauciflora) leaf respiration to sea-sonal and diurnal variations in temperature: the importance of changes in the capacity and leaf temperature sensitivity of respiration. Plant Cell Environ. 23, 15–26.
  • Baldocchi, D. D., Law, B. E. and Anthoni, P. M. 2000. On measuring and modeling energy fluxes above the floor of a homogenous and heterogeneous conifer forest. Agric. Forest Meteorol. 102, 187–206.
  • Bird, M., S'antriielova., H., Arneth, A., Grigoriev, S., Gleixner, G., Kalashnikov, Y. N., Lloyd, J. and Schulze, E.-D. 2002. Soil carbon inventories and carbon-13 on a latitude transect in Siberia. Tellus 54B, this issue.
  • Bouma, T. J., De Visser, R., Jannsen, J. J. J. A., De Kock, M. J., Van Leewen, P. H. and Lambers, H. 1994. Respi-ratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein syn-thesis and a probe to assess its affect. Physiol. Plant. 92, 585-594.
  • Constantin, J., Grelle, A., Ibrom, A. and Morgenstern, K. 1999. Flux partitioning between understorey and over-storey in a boreal spruce/pine forest determined by the eddy covariance method. Agric . For. Mete orol . 98/99,629–643.
  • Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Na-ture 408, 184-187.
  • Cramer, W., Bondeau, A., Woodward, F. I., et al. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic vege-tation models. Global Change Biol. 7,357–373.
  • Denning, A. S., Collatz, G. J., Zhang, C. G., Randall, D. A., Berry, J. A., Sellers, P. J., Colleto G. D. and Dazlich, D. A. 1996. Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. 1 Carbon fluxes. Tellus 48B, 521–542.
  • Ericsson, A. 1979. Effects of fertilization and irrigation on seasonal changes in carbohydrate reserves in different age classes of needles on 20-year old Scots pine trees (Pinus sylvestris). Physiol. Plant. 45, 270–280.
  • Eugster, W. and Senn, W. 1995. A cospectral correction model for measurements of turbulent NO2 flux. Boundary-Layer Meteorol. 74, 321–340.
  • Finnigan, J. J., Clements, R., Malhi, Y., Leuning, R. and Cleugh, H. A. 2002. A re-evaluation of long-term flux measurement techniques Part I. Averaging and coordinate rotation. Boundary-Layer Meteorol. (in press).
  • Foken T. and Wichura, B. 1996. Tools for quality assessment of surface-based flux measurements. Agric. For. Meteorol. 78, 83–105.
  • Griffin, K. L. 1994. Calormetric estimates of construction costs and their use in ecological studies. Funct. Ecol. 8, 551–562.
  • Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C. and Wofsy, S. C. 1996. Measurements of carbon seques-tration by long-term eddy covariance: Methods and criti-cal evaluation of accuracy. Global Change Biol. 2, 169–182.
  • Gower, S. T., Vogel, J. G., Norman, J. M., Kucharik, C. J., Steele, S. J. and Stow, T. K. 1997. Carbon distri-bution and aboveground net primary production in as-pen, jack pine and black spruce stands in Salcatchewan and Manitoba, Canada. J. Geophys. Res. 102, 29029–29041.
  • Grace, J., Malhi, Y., Lloyd, J., McIntyre, J., Miranda, A. C., Meir, P. and Miranda, H. 1996. The use of eddy covariance to infer the carbon balance of Brazilian rain forests. Global Change Biol. 2,209–218.
  • Hosker, R. P.Jr., Nappo, C. J. and Hanna, S. R. 1974. Diurnal variation of vertical thermal structure in a pine plantation. Agric. Meteorol. 13, 257-265.
  • Jacobs, A. F. G., Van Boxel, J. H. and Shaw, R. H. 1992. The dependence of canopy layer turbulence on within-canopy stratification. Agric. For. Meteorol. 58, 247–256.
  • Jacobs, A. F. G., van de Wiel and Holtstag, A. A. M. 2001. Daily course of skewness and kurtosis within and above a crop canopy. Agric. For. Meteorol. 110, 71-84.
  • Janssens, I. A., Lankreijer, H., Matteucci, G., et al. 2001a. Productivity overshadows temperature in determining soil and ecosystem respiration rates across European forests. Global Change Biol. 7, 269–278.
  • Janssens, I. A., Kowalski, A.S. and Ceulemans, R. 2001b. Forest floor CO2 fluxes estimated by eddy covariance and chamber-based model. Agric. For. Meteorol. 106, 61–69.
  • Jarvis, P. G. and Linder, S. 2000. Constraints to growth of boreal forests. Nature 405, 904–905.
  • Jarvis, P. G., Massheder, J. M., Hale, S. E., Moncrieff, J. B., Rayment, M. and Scott, S. L. 1997. Seasonal variation of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest. J. Geophys. Res. 102, 28953-28966.
  • Kelliher, F. M., Lloyd, J., Arneth, A., Luhker, B., Byers, J. N., McSeveny, T. M., Milyukova, I., Grigoriev, S., Panfy-orov, M., Sogatchev, A., Varlagin, A., Ziegler, W., Bauer, G., Wong, S.-C. and Schulze, E.-D. 1999. Carbon dioxide efflux density from the floor of a central Siberian forest. Agric. For. Meteorol. 94, 217-232.
  • Kirschbaum, M. U. E 1995. The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic-C storage. Soil Biol. Biochem. 27, 753–760.
  • Knohl, A., Kolle, O., Minayeva, T. I., Milyukova, I. M., Vy-godskaya, N. N., Foken, Th. and Schulze, E.-D. 2002. Car-bon exchange of a Russian boreal forest after windthrow. Global Change Biol. 8, 231-246.
  • Knorr, W. and Heimann, M. 2001. Uncertainties in global ter-restrial biosphere modelling 1. A comprehensive sensitiv-ity analysis with a new photosynthesis and energy balance scheme. Global Biogeochem. Cycles 15, 207-225.
  • Krivosheeva, A., Tai, D.-L., Ottander, C., Wingsle, G., Dube, S. K. and Oquist, G. 1996. Cold acclimation and pho-toinhibition of photosynthesis in Scots pine. Planta 200, 296–305.
  • Kruijt, B., Malhi, Y., Lloyd, J., Nobre, A. D., Miranda, A. C., Pereira, M. G. P., Culf, A. and Grace, J. 2000. Turbu-lence statistics above and within two Amazon rain forest canopies. Boundary-Layer Meteorol. 94, 297-331.
  • Lafont, S., Kergoat, L., Dedieu, G., Chevillard, G., Karstens, U. and Kolle, 0. 2002. Spatial and temporal variability of land CO2 fluxes estimated with remote sensing and anal-ysis data over western Eurasia. Tellus 54B, this issue.
  • Lavigne, M. B. and Ryan, M. G. 1997. Growth and main-tenance respiration rates of aspen, black spruce and jack pine stems at northern and southern BOREAS sites. Tree Physiol. 17, 543-551.
  • Law, B. E., Ryan, M. G. and Anthoni, P. M. 1999a. Sea-sonal and annual respiration of a ponderosa pine ecosys-tem. Global Change Biol. 5, 169–182.
  • Law, B. E., Baldocchi, D. D. and Anthoni, P. M. 1999b. Below-canopy and soil CO2 fluxes in a ponderosa pine forest. Agric. For. Meteorol. 94, 171-188.
  • Lee, X., Black, T. A., Hartog, G. D., Neumann, H. H., Nesic, Z. and Olejnilc, J. 1996. Carbon dioxide exchange and noc-turnal processes over a mixed deciduous forest. Agric. For. Meteorol. 81, 13–29.
  • Leverenz, J. W. and Oquist, G. 1987. Quantum yields of pho-tosynthesis at temperatures between 2 °C and 35 °C in a cold-tolerant C3 plant (Pinus sylvestris) during the course of one year. Plant Cell Environ. 10, 287–295.
  • Linder S. and Troeng, E. 1981. The seasonal variation in stem and coarse root respiration of a 20 year old Scots pine. Mitteil. Forstl. Bundes. Wien 142, 125–139.
  • Lindroth, A., Grelle, A. and Moren, A.-S. 1998. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biol. 4, 443–450.
  • Lipson, D. A., Schmidt, S. K., Monson, R. K. 1999. Links be-tween microbial population dynamics and nitrogen avail-ability in an alpine ecosystem. Ecology 80, 1623–1631.
  • Lipson, D. A., Schmidt, S. K., Monson, R. K. 2000. Carbon availability and temperature control the post-snowmelt de-cline in alpine microbial biomass. Soil Biol. Biochem. 32, 441–448.
  • Lloyd, J. 1999a. Current perspectives on the terrestrial carbon cycle. Tellus 51B, 336-342.
  • Lloyd, J. 1999b. The CO2 dependence of photosynthesis, plant growth responses to elevated CO2 concentrations and their interactions with soil nutrient status II. Temperate and boreal forest productivity and the combined effects of increasing CO2 concentrations and increased nitrogen deposition at a global scale Funct. Ecol. 13, 439-459.
  • Lloyd, J. and Farquhar, G. D. 1994. “C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia 99, 201-215.
  • Lloyd, J. and Taylor, J. A. 1994. On the temperature depen-dence of soil respiration. Funct. Ecol. 8, 315-323.
  • Lloyd, J., Grace, J., Miranda, A. C., Meir, P., Wong, S.-C., Miranda, H. S., Wright, I. R., Gash, J. H. C. and McIntyre, J. 1995. A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant, Cell Environ. 18, 1129-1145.
  • Lloyd, J. and Farquhar, G. D. 1996. The CO2 dependence of photosynthesis, plant growth responses to elevated at-mospheric CO2 concentrations and their interaction with plant nutrient status. Funct. Ecol. 10, 4-32.
  • Lloyd, J., Francey, R. J., Mollicone, D., Raupach, M. R., Sogachev, A., Arneth, A., Byers, J. N., Kelliher, F. M., Rebmann, C., Valentini, R., Wong, S.-C., Bauer, G. and Schulze, E.-D. 2001. Vertical profiles, boundary-layer bud-gets, and regional flux estimates for CO2, and its 13 012c ratio and for water vapor above a forest/bog mosaic in central Siberia. Global Biogeochem. Cycles 15, 267-284.
  • Lloyd, J., Shibistova, O., Zolotoulchine, D., Kolle, O., Ar-neth, A., Styles, J., Tchebakova, N. M. and Schulze, E.-D. 2002. Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian Pine forest. Tellus 54B, this issue.
  • McMillan, R. T. 1988. An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorol. 43, 231–245.
  • Mahrt, L. 1999. Stratified atmospheric boundary layers. Boundary-Layer Meteorol. 90, 375–396.
  • Maldcanen, K. and Helmisaari, H.-S. 1998. Seasonal and yearly variations of fine-root biomass and necromass in a Scots pine (Pinus sylvestris L.) stand. Forest Ecol. Man-agement 102, 283–290.
  • Malkina, I. S. 1984. Gas-exchange and synthesis of assimi-lates by Scots pine needles of different age. Lesovedenie 6,29-33 (in Russian).
  • Martin, P. H., Valentini, R., Jacques, M., et al. 1998. New estimate of the sink strength of EU forests integrating flux measurements, field surveys and space observations: 0.17 to 0.35 Gt (C). Ambio 27, 582-584.
  • Milyukova, I. M, Kolle, O., Varlagin, A. B., Vygodskaya, N. N., Schulze, E.-D. and Lloyd, J. 2002. Carbon balance of a southern taiga spruce stand in European Russia. Tellus 54B, this issue.
  • Ogren, E. 1997. Relationship between temperature, respira-tory loss of sugar and premature dehardening in dormant Scots pine seedlings. Tree Physiol. 17,47–51.
  • Ogren, E., Nilsson, T. and Sundblad, L.-G. 1997. Relation-ship between respiratory depletion of sugars and loss of cold hardiness in coniferous seedlings over-wintering at raised temperatures: Indications of different sensitivities of spruce and pine. Plant Cell Environ. 20, 247–253.
  • Ogren, E. 2000. Maintenance respiration correlates with sugar but not nitrogen concentration in dormant plants. Physiol. Plant. 108, 295–299.
  • Oquist, G., Brunes, L., Hällgren, J.-E., Gezelius, K., Hellen, M. and Malmberg, G. 1980. Effects of artificial forest hard-ening and winter stress on net photosynthesis, photosyn-thetic electron transport and RuBP carboxylase activity in seedlings on Pinus sylvestris. Physiol. Plant. 48, 526–531.
  • Ottander, C., Campbell, D. and Oquist, G. 1995. Seasonal changes in Photosystem II organisation and pigment com-position in Pinus sylvestris. Planta 197, 176–183.
  • Outcalt, S. I., Nelson, F. E. and Hinkel, K. M. 1990. The zero curtain effect-heat and mass transfer across an isother-mal region in freezing soil. Water Resour. Res. 26, 1509-1516.
  • Parker, J. 1959. Seasonal variations in sugars of conifers with some observations on cold resistance. For. Sci. 5, 56–63.
  • Potter, C., Bubier, J., Crill, P. and Lafleur, P. 2001. Ecosystem modeling of methane and carbon dioxide fluxes of boreal forest sites. Can. J. For. Res. 31, 208-223.
  • Prentice, C., Farquhar, G. D., Fasham, M., Goulden, M., Heimann, M., Jaramillo, V, Kheshgi, H., Le Quere, C., Scholes, R. and Wallace, D. 2001. The carbon cycle and atmospheric CO2. In: Climate change: the scientific basis: the contribution of WGI of the IPCC to the IPCC Third Assessment Report (TAR), (eds. J. Houghton and D. Yihui). Cambridge University Press, Cambridge,183-237.
  • Raich, J. W. and Potter, C. S. 1995. Global patterns of carbon dioxide emission from soils. Global Biogeochem. Cycles 9, 23–36.
  • Ross, D. J., Kelliher, E M. and Tate, K. R. 1999. Microbial process in relation to carbon, nitrogen and temperature regimes in litter and a sandy mineral soil from a central Siberian Pinus sylvestris L. forest. Soil Biol. Biochem. 31, 757-767.
  • Ruimy, A., Dedieu, G. and Saugier, B. 1996. TURC: A di-agnostic model of continental gross primary productivity and net primary productivity. Global Biogeochem. Cycles 10, 269–285.
  • Ryan, M. G. 1990. Growth and maintenance respiration in stems of Pinus contorta and Picea engelmannii. Can. J. For. Res. 20, 48–57.
  • Ryan, M. G., Lavigne, L. B. and Gower, S. T. 1997. An-nual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J. Geophys. Res. 102, 28871–28883.
  • S'antrilèlcova., H., Bird, M. I., Kalashnilcov, Y. N., Grund, M., Elhottova, D., S'imek, M., Grigoryev, S., Gleixner, G., Arneth, A., Schulze, E.-D. and Lloyd, J. 2002. Microbial characteristics of soils on a latitudinal transect in Siberia. Global Change Biol. (in press).
  • Sawamoto, T., Hatano, R., Yajima, R., Takahashi, K. and Isaev, A. P. 2000. Soil respiration in Siberian taiga ecosys-tems with different histories of forest fire. Soil Sci. Plant Nutr. 46, 31–42.
  • Schimel, D. S., Braswell, B. H., Parton, W. J. 1999. Equili-bration of the terrestrial water, nitrogen and carbon cycles. Proc. Natl. Acad. Sci. USA 94, 8280-8293.
  • Schuepp, P. H., LeClerc, M. Y., MacPherson, J. L. and Desjardin, R. L. 1990. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorol. 50, 355-373.
  • Schulze, E.-D., Lloyd, J., Kelliher, F. M., Wirth, C., Rebmann, C., Luhker, B., Mund, M., Knohl, A., Milyukova, I. M., Schulze, W., Ziegler, W., Varlagin, A. B., Sogachev, A. E, Valentini, R., Done, S., Grigoriev, S., Kolle, O., Panfyorov, M. I., Tchebakova, N. and Vygod-slcaya, N. N. 1999. Productivity of forests in the Eurosi-berian boreal region and their potential to act as a carbon sink - a synthesis. Global Change Biol. 5, 703-722.
  • Shibistova, O., Lloyd, J Evgrafova, S., Savushlcina, N., Zrazhewskaya, G., Arneth, A., Knohl, A., Kolle, O. and Schulze, E.-D. 2002a. Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest. Tellus 54B, this issue.
  • Shibistova, 0. B., Lloyd, J Kolle, O., Arneth, A., Tchebakova, N. M., Zolotoulchine, D. A., Zrazhewslcaya, G. and Schulze, E.-D. 2002b. Eddy covariance assessment of CO2 accumulation by mature pine forest. Dokl. Akad. Nauk 383, 1-5 (in Russian).
  • Shuttleworth, W. J., Gash, J. H. C., Lloyd, C. R., et al. 1984. Daily variations in temperature and humidity within and above Amazonian forest. Weather 40, 102-108.
  • Sorokin, N. D. and Evgrafova, S. Yu. 1999. Biological activity of forest cryogenic soils in Central Evenlcia. Eurasian Soil Sci. 32, 634–638.
  • Sprugel, D. G. and Benecke, U. 1991. Measuring woody-tissue respiration and photosynthesis. In: Techniques and approaches in forest tree physiology (eds. J. P. Lassoie and T. M. Hinckley). CRC Press, Boca Raton, FL, 329-355.
  • Stocicfors, J. 2000. Temperature variations and distribution of living cells within tree stems: implications for stem res-piration modelling and scaling up. Tree Physiol. 20, 1057-1062.
  • Stocicfors, J. and Linder, S. 1998a. The effects of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees. Tree Physiol. 18, 155-166.
  • Stocicfors, J. and Linder, S. 1998b. The effect of nutrition on the seasonal course of needle respiration in Norway spruce stands. Trees 12, 130-138.
  • Sudachkova, N. E., Romanova, L. I., Milyutina, I. L., Kozhevnikova, N. N. and Semenova, G. P. 1994. Environ-mental stress impact on carbohydrate level and distribution in tissues of Scots pine in Siberia. Lesovedenie 6, 3-9 (in Russian).
  • Sumgin, M. I., Kachurin, S. P., Tolstilchin, N. I. and Tumel, V. E 1940. General permafrostology. Akademiia Nauk SSR, Moscow. 240 pp. (in Russian).
  • Tchebakova, N. M., Kolle, O., Zolotoulchine, D., Arneth, A., Styles, J. M., Vygodslcaya N. N., Schulze, E.-D., Shibistova, O. and Lloyd, J. 2002. Inter-annual and seasonal vari-ations of energy and water vapour fluxes above a Pinus sylvestris forest in the Siberian middle taiga. Tellus 54B, this issue.
  • Vaganov, E. A., Hughes, M. K., Kirdyanov, A. V., Schwein-gruber, F. H. and Sillcin, P. P. 1999. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400, 149-151.
  • Valentini, R., Matteucci, G., Dolman, A. J., et al. 2000. Res-piration as the main determinant of carbon balance in Eu-ropean forests. Nature 404, 861-865.
  • Winston, G. C., Sundquist, E. T, Stephens, B. B. and Trum-bore, S. E. 1997. Winter CO2 fluxes in a boreal forest. J. Geophys. Res. 102, 795–804.
  • Wirth, C., Schulze, E-.D., Schulze, W., von Stfinzer-Karbe, W., Ziegler, W., Milyukova, I. M., Sogatchev, A, Varla-gin, A. B., Panfyorov, M., Grigoriev, S., Kusnetova, V., Siry, M., Hardes, G., Zimmermann, R. and Vygodskoya, N. N. 1999. Above-ground biomass and structure of pris-tine Siberian Scots pine forests as controlled by competi-tion and fire. Oecologia 121, 66-80.
  • Wirth, C. Czimczilc, C. I. and Schulze, E.-D. 2002a. Beyond annual budgets: carbon flux at different temporal scales in fire-prone Siberian Scots pine forests. Tellus 54B, this issue.
  • Wirth, C., Schulze, E.-D., Kusznetova, V., Hardes, G., Siry, M., Schulze, B. and Vygodskaya, N. N. 2002b. Above-ground net primary productivity of Siberian Scots pine forest-Magnitude and causes of variability at different timescales. Tree Physiol. 22, 537–552.
  • Wirth, C., Schulze, E.-D., Liihker, B., Grogoriev, S., Siry, M., Hardes, G., Ziegler, W., Backor, M., Bauer, G. and Vygodslcaya, N. N. 2002. Fire and site type effects on the long-term carbon and nitrogen balance in pristine Siberian Scots pine forests. Plant and Soil (in press).