297
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest

, , , , , , , & show all
Pages 590-610 | Received 06 Apr 2002, Accepted 17 Jun 2002, Published online: 15 Dec 2016

References

  • Arbarslcaya, M. K. and Vaganov, E. A. 1997. Long-term vari-ation in fire frequency and radial increment in pine from the middle taiga subzone of central Siberia. Russ. J. Ecol. 28, 291–297.
  • Arneth, A., Lloyd, J., S'antrakova., H., Bird, M. I., Grigoriev, S., Kalaschnilcov, Y. N., Gleixner, G. and Schulze, E.-D. 2002. Response of central Siberian Scots pine to soil water deficit and long-term trends in atmospheric CO2 concen-tration. Global Biogeocheml. Cycles (in press).
  • Baldocchi, D., Valentini, R., Oechel, W. and Dahlman, R. 1996. Strategies for measuring and modelling carbon diox-ide and water vapour fluxes over terrestrial ecosystems. Global Change Biol. 2, 159–168.
  • Baldocchi, D. D., Vogel, C. A. and Hall, B. 1997. Seasonal variation of carbon dioxide exchange rates above and be-low a boreal jack pine forest. Agric. For. Meteorol. 83, 147–170.
  • Baldocchi, D., Falge E., Gu, L. H. and coauthors. 2001. FLUXNET: A new tool to study the temporal and spa-tial variability of ecosystem-scale carbon dioxide, water vapour and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434.
  • Bird, M., S'antrii6ková, H., Arneth, A., Grigoriev, S., Gleixner, G., Kalashnilcov, Y. N., Lloyd, J. and Schulze, E.-D. 2002. Soil carbon inventories and carbon-13 on a latitude transect in Siberia. Tellus 54B, this issue.
  • Chen, J. M., Rich, P. M., Gower, S. T., Norman, J. M. and Plummer, S. 1997. Leaf area index of boreal forests: the-ory, techniques and measurements. J. Geophys. Res. 102, 29429-29443.
  • Ciais, P., Peylin, P. and Bousquet, P. 2000. Regional bio-spheric carbon fluxes as inferred from atmospheric CO2 measurements. Ecol. Appl. 10, 1574-1589.
  • Cowan, I. R. 1977. Stomatal behavior and environment. Adv. Bot. Res. 4, 117–228.
  • Dang, Q. L., Margolis, H. A., Sy, M., Coyea, M. R., Collatz, G. J. and Walthall, C. L. 1997. Profiles of photosyntheti-cally active radiation, nitrogen and photosynthetic capacity in the boreal forest: Implications for scaling from leaf to canopy. J. Geophys. Res. 102, 28845-28859.
  • Ericsson, A. 1979. Effects of fertilization and irrigation on seasonal changes in carbohydrate reserves in different age classes of needles on 20-year old Scots pine trees (Pinus sylvestris). Physiol. Plant. 45, 270–280.
  • Eugster, W. and Senn, W. 1995. A cospectral correction model for measurements of turbulent NO2 flux. Boundary-Layer Meteorol. 74, 321–340.
  • Fan, S, Gloor, M., Mahlman, J., Pacala, S., Sarmiento, J., Takahashi, T. and Tans, P. 1998. A large terrestrial sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282, 754–759.
  • Foken T. and Wichura, B. 1996. Tools for quality assessment of surface-based flux measurements. Agric. For. Meteorol. 78, 83–105.
  • Garratt, J. R. 1992. The atmospheric boundary layer. Cambridge University Press, Cambridge.
  • Goulden, M. L., Munger J. W., Fan, S. M., Daube, B. C. and Wofsy, S. C. 1996. Exchange of carbon dioxide by a de-ciduous forest; Response to interannual climate variability. Science 271, 1576–1578.
  • Goulden, M. L., Wofsy, S. C., Harden, J. W., Trumborne, S. E., Crill, P. M., Gower, S. T., Fries, T., Daube, B. C., Fan, S.-M., Sitton, D. J., Bazzaz, E A. and Munger, D. W. 1998. Sensitivity of boreal forest carbon balance to soil thaw. Science 279, 214-217.
  • Grace, J., Lloyd, J., Miranda, A. C., Miranda, H. and Gash, J. H. C. 1998. Fluxes of carbon dioxide and water vapour over a C4 pasture in south-western Amazonia (Brazil). Aust. J. Plant Physiol. 25, 519–530.
  • Hari, P., Mäkeld, A., Berninger, F. and Pohja, T. 1999. Field evidence for the optimality hypothesis of gas exchange in plants. Aust. J. Plant Physiol. 26, 239-244.
  • Hollinger, D. Y., Kelliher, F. M., Schulze, E.-D., Bauer, G., Arneth, A., Byers, J. N., Hunt, J. E., McSeveny, T. M., Kobak, K. I., Milyukova, I., Sogachev, A., Tatarinov, F., Varlagin, A., Ziegler, W. and Vygodskaya, N. N. 1998. Forest—atmosphere carbon dioxide exchange in eastern Siberia. Agric. For. Meteorol. 90, 291-306.
  • Janssens, I. A., Lanlcreijer, H., Matteucci, G. et al. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration rates across European forests. Global Change Biol. 7, 269–278.
  • Jarvis, P. G., Massheder, J. M., Hale, S. E., Moncreiff, J. B., Rayment, M. and Scott, S. L. 1997. Seasonal variation of carbon dioxide, water vapour and energy exchanges of a boreal black spruce forest. J. Geophys. Res. 102, 28953–28966.
  • Kaminski, T., Heimann, M. and Giering, R. 1999. A coarse grid three-dimensional global inverse model of the atmospheric transport-2. Inversion of the transport of CO2 in the 1980s. J. Geophys. Res. 104, 18555–18581.
  • Kelliher, F. M., Lloyd, J., Arneth, A., Luhker, B., Byers, J. N., McSeveny, T. M., Milukova, I., Grigoriev, S., Pan-fyorov, M., Sogatcev, A., Varlagin, A., Ziegler, W., Bauer, G., Wong, S.-c. and Schulze, E.-D. 1999. Carbon dioxide efflux density from the floor of a central Siberian forest. Agric. For. Meteorol. 94, 217-232.
  • Kelliher, F. M., Lloyd, J., Baldocchi, D. D., Rebmann, C., Wirth, C. and Schulze, E.-D. 2001. Evaporation in the boreal zone: Physics, vegetation and climate. In: Global biogeochemical cycles in the climate system (eds. E.-D. Schulze, S. P. Harrison, M. Heimann, E. A. Holland, J. Lloyd, I. C. Prentice and D. Schimel). Academic Press, New York,151-175.
  • Kossmann, J. and Lloyd, J. 2000. Understanding and influ-encing starch biochemistry. Crit. Rev. Plant Sci. 19, 171–226.
  • Krivosheeva, A. Tai, D.-L., Ottander, C., Wingsle, G., Dube, S. K. and Oquist, G. 1996. Cold acclimation and photoin-hibition of photosynthesis in Scots pine. Planta 200, 296-305.
  • Lindroth, A., Grelle, A. and Moren, A.-S. 1998. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biol. 4, 443–450.
  • Lloyd, J. 1991. Modelling stomatal response of Macadamia integrifolia. Austr. J. Plant Physiol. 18, 549–660.
  • Lloyd, J. 1999a. Current perspectives on the terrestrial carbon cycle. Tellus 51B, 336–342.
  • Lloyd, J. 1999b. The CO2 dependence of photosynthesis, plant growth responses to elevated CO2 concentrations and their interactions with soil nutrient status II. Temperate and boreal forest productivity and the combined effects of increasing CO2 concentrations and increased nitrogen deposition at a global scale. Funct. Ecol. 13,439–459.
  • Lloyd, J. and Farquhar, G. D. 1994. '3C discrimination dur-ing photosynthetic CO2 assimilation by the terrestrial bio-sphere. Oecologia 99, 201–215.
  • Lloyd, J. and Farquhar, G. D. 1996. The CO2 dependence of photosynthesis, plant growth responses to elevated at-mospheric CO2 concentrations and their interaction with plant nutrient status. Funct. Ecol. 10, 4–32.
  • Lloyd, J. and Farquhar, G. D. 2000. Do slow-growing species and nutrient-stressed plants consistently respond less to el-evated CO2? A clarification of some issue raised by Poorter (1998). Global Change Biol. 6,871–876.
  • Lloyd, J., Grace, J., Miranda, A. C., Meir, R, Wong, S. C., Miranda, H. S., Wright, I. R., Gash, J. H. C. and McIntyre, J. 1995. A simple calibrated model of Amazon rainforest productivity based on leaf biochemical poperties. Plant, Cell Environ. 18, 1129–1145.
  • Lloyd, J., Francey, R. J., Mollicone, D., Raupach, M. R., Sogachev, A., Arneth, A., Byers, J. N., Kelliher, F. M., Rebmann, C., Valentini, R., Wong, S.-C., Bauer, G. and Schulze, E.-D. 2001. Vertical profiles, boundary-layer bud-gets, and regional flux estimates for CO2, and its 13 012c ratio and for water vapor above a forest/bog mosaic in central Siberia. Global Biogeochem. Cycles. 15, 267-284.
  • McMillen R. T. 1988. An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorol. 43, 231–245.
  • McNaughton, K. G. 1994. Effective stomatal and bound-ary layer resistance of heterogeneous surfaces. Plant Cell Environ. 17, 1061–1068.
  • Maldconen, K. and Helmisaari, H.-S. Fine root biomass and production in Scots pine stands in relation to stand age. Tree Physiol. 21, 193-198.
  • Malhi, Y., Baldocchi, D. D. and Jarvis, P. G. 1999. The carbon balance of tropical temperate and boreal forests. Plant Cell Environ. 22,715–740.
  • Milyukova, I. M., Kolle, O., Varlagin, A. B., Vygodslcaya, N. N., Schulze, E.-D. and Lloyd, J. 2002. Carbon balance of a southern taiga spruce stand in European Russia. Tellus 54B, this issue.
  • Nichol, C. J., Lloyd, J., Shibistova, O., Arneth, A., Röser, C., Knohl, A., Matsubara, S. and Grace, J. 2002. Remote sensing of photosynthetic light-use efficiency of Siberian boreal forest. Tellus 54B, this issue.
  • Oquist, G., Brunes, L., Hällgren, J.-E., Gezelius, K., Hellen, M. and Malmbberg, G. 1980. Effects of artificial forest hardeining and winter stress on net photosynthesis, photo-synthetic electron transport and RuBP carboxylase activity in seedlings on Pinus sylvestris. Physiol. Plant. 48, 526–531.
  • On, J. C., Maier-Reimer, E., Mikolajewicz, U., Monfray, P., Sarmiento, J. L., Toggweiler, R. J., Taylor, N. J., Palmer, J., Gruber, N., Sabine, C. L., Le Quere, C., Key, R. M. and Boutin, J. 2001. Estimates of anthropogenic carbon uptake from four 3-D global ocean models. Global Biogeochem. Cycles 15,43-60.
  • Ottander, C., Campbell, D. and Oquist, G. 1995. Seasonal changes in Photosystem II organisation and pigment com-position in Pinus sylvestris. Planta 197, 176–183.
  • Paul, M. J. and Foyer, Ch. H. 2001. Sink regulation of pho-tosynthesis. J. Exp. Bot. 52, 1383–1400.
  • Paulson, C. A. 1970. The mathematical representation of on windspeed and temperature profiles in the unstable surface layer. J. Appl. Meteorol. 9, 857–861.
  • Prentice, I. C., Farquhar, G. D., Fasham, M., Goulden, M., Heimann, M., Jaramillo, V., Kheshgi, H., Le Quere, C., Scholes, R. and Wallace, D. 2001. The carbon cycle and atmospheric CO2. In: Climate change: the scientific basis: The contribution of WGI of the IPCC to the IPCC Third Assessment Report (TAR). (eds. J. Houghton and D. Yihui). Cambridge University Press,183-237.
  • Rayner, P. J., Enting, I. G., Francey, R. J. and Langenfelds, R. 1999. Reconstructing the recent carbon cycle from at-mospheric CO2, 13C and 02/N2 observations. Tellus 51B, 213–232.
  • Ryan, M. G., Lavigne, L. B. and Gower, S. T. 1997. An-nual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J. Geophys. Res. 102, 28871–28883.
  • antriikova. H., Bird, M. I., Kalashnikov, Y. N., Grund, M., Elhottova, D., Simek, M., Grigoryev, S., Gleixner, G., Ar-neth, A., Schulze, E.-D. and Lloyd, J. Microbial character-istics of soils on a latitudinal transect in Siberia. Global Change Biol. (in press).
  • Savitch, L. V., Leonardos, E. D., Krol, M., Jansson, S., Grodzinski, B., Huner, N. P. A. and Oquist, G. 2002. Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation. Plant Cell Environ. 25, 761-771.
  • Sawamoto, T., Hatano, R., Yajima, R., Takahashi, K and Isaev, A. P. 2000. Soil respiration in Siberian taiga ecosys-tems with different histories of forest fire. Soil Sci. Plant Nutr. 46, 31-42.
  • Schulze, E.-D., Lloyd J., Kelliher, F. M., Wirth, C., Rebmann, C., Liihker, B., Mund, M., Knohl, A., Milyukova, I. M., Schulze, W., Ziegler, W., Varlagin, A. B., Sogachev, A. F., Valentini, R., Dore, S., Grigoriev, S., Kolle, O., Panfyorov, M. I., Tchebakova, N. and Vygodskaya, N. N. 1999. Pro-ductivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink — a synthesis. Global Change Biol. 5, 703-722.
  • Shibistova, O., Lloyd, J., Evgrafova, S., Savushlcina, N., Zrazhewslcaya, G., Arneth, A., Knohl, A., Kolle, O. and Schulze, E.-D. 2002a. Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest. Tellus 54B, this issue.
  • Shibistova, O., Lloyd, J., Zrazhewslcaya, G., Arneth, A., Kolle, O., Astralchantceva, N., Shijneva, I., Knohl, A. and Schmerler, J. 2002b. Ecosystem respiration budget for a Pinus sylvestris stand in central Siberia. Tellus 54B, this issue.
  • Shibistova, 0. B., Lloyd, J., Kolle, O., Arneth, A., Tchebalcova, N. M., Zolotoulchine, D. A., Zrazhewskaya, G. and Schulze, E.-D. 2002c. Eddy covariance assessment of CO2 accumulation by mature pine forest. Dokl. Akad. Nauk 383, 1-5 (in Russian).
  • Sudachkova, N. E., Romanova, L. I., Milyutina, I. L., Kozhevnikova, N. N. and Semenova, G. P. 1994. Environ-mental stress impact on carbohydrate level and distribution in tissues of Scots pine in Siberia. Lesovedenie 6, 3-9 (in Russian).
  • Tans, P. P., Fung, I. Y. and Takahashi, T. 1990. Observational constraints of the global atmospheric CO2 budget. Science 247, 1431–1438.
  • Tchebakova, N. M., Kolle, O., Zolotoulchin, D., Arneth, A., Styles, J. M., Vygodskaya N. N., Schulze, E.-D., Shibistova, O. and Lloyd, J. 2002. Inter-annual and sea-sonal variations of energy and water vapour fluxes above a Pinus sylvestris forest in the Siberian middle taiga. Tellus 54B, this issue.
  • Valentini, R., Metteucci, G., Dolman, A. J. et al. 2000. Respiration as the main determinant of carbon balance in Eu-ropean forests. Nature 404, 861-865.
  • Van der Werf, A., Poorter, H. and Lambers, H. 1994. Res-piration as dependent on a species' inherent growth rate and on nitrogen supply to the plant. In: A whole plant per-spective on carbon—nitrogen interactions (eds. J. Roy and E.Garnier), SPB Publishing, The Hague, 91-110.
  • Vogg, G., Helm, R., Hansen, J., Schafer, C. and Beck, E. 1998. Frost hardening and photosynthetic performance of Scots pine (Pinus sylvestris L.) needles. I. Seasonal changes in the photosynthetic apparatus and its function. Planta 201, 193-200.
  • Waring, R. H., Landsberg, J. J. and Willians, M. 1998. Net primary production of forests: a constant fraction of gross primary production? Tree Physiol. 18, 135-140.
  • Wirth, C. 2000. Der Einflufi von Feuer auf den Kohlen-stoffhausalt sibirischer Kiefernwiilder (Pinus sylvestris L.)unter biogeochemischen und populations biologis-chenAspekten. Ph.D. Thesis, University of Bayreuth, 260 pp.
  • Wirth, C., Schulze, E-.D., Schulze, W., von Stiinzer-Karbe, W., Zeigler, W., Milyukova, I. M., Sogatchev, A, Varla-gin, A. B., Panfyorov, M., Grigoriev, S., Kusnetova, V., Siry, M., Hardes, G., Zimmermann, R. and Vygodskoya, N. N. 1999. Above-ground biomass and structure of pris-tine Siberian Scots pine forests as controlled by competi-tion and fire. Oecol. 121, 66-80.
  • Wirth, C. Czimczik, C. I. and Schulze, E.-D. 2002a. Beyond annual budgets: carbon flux at different temporal scales in fire-prone Siberian Scots pine forests. Tellus 54B, this issue.
  • Wirth, C., Schulze, E.-D., Kusznetova, V., Hardes, G., Siry, M., Schulze, B. and Vygodskaya, N. N. 2002b. Above-ground net primary productivity of Siberian Scots pine forest — Magnitude and causes of variability at different timescales. Tree Physiology 22, 537–552.
  • Wirth, C., Schulze, E.-D., Liihker, B., Grogoriev, S., Siry, M., Hardes, G., Zeigler, W., Backor, M., Bauer, G. and Vygodskaya, N. N. 2002c. Fire and site type effects on the long-term carbon and nitrogen balance in pristine Siberian Scots pine forests. Plant and Soil (in press).