512
Views
11
CrossRef citations to date
0
Altmetric
Original Research Articles

Contribution to the global air–sea CO2 exchange budget from asymmetric bubble-mediated gas transfer

Article: 17260 | Received 06 May 2011, Accepted 13 Jan 2012, Published online: 28 Mar 2012

References

  • Asher, W. E, Edson, J. B, McGillis, W. R, Wanninkhof, R, Ho, D. T. and co-authors. 2002. Fractional area whitecap coverage and air–sea gas transfer during GasEx-98. In: Gas Transfer at Water Surfaces. ( M. A.Donelan, W. M.Drennan, E. S.Saltzman and R.Wanninkhof). American Geophysical Union: Washington DC, pp. 199–204.
  • Asher W. E, Karle L. M, Higgins B. J, Farley P. H, Monahan E. C, co-authors.. The influence of bubble plumes on air/seawater gas transfer velocities. J. Geophys. Res. 1996; 101: 12027–12042. 10.3402/tellusb.v64i0.17260.
  • Asher W. E, Wanninkhof R. The effect of bubble-mediated gas transfer on purposeful dual gaseous-tracer experiments. J. Geophys. Res. 1998; 103: 10555–10560. 10.3402/tellusb.v64i0.17260.
  • Caldeira K, Wickett M. E. Anthropogenic carbon and ocean pH. Nature. 2003; 425: 365–365. 10.3402/tellusb.v64i0.17260.
  • Cipriano R. J, Blanchard D. C. Bubble and aerosol spectra produced by a laboratory ‘breaking wave’. J. Geophys. Res. 1981; 86: 8085–8092. 10.3402/tellusb.v64i0.17260.
  • Craig H, Hayward T. Oxygen supersaturation in the ocean: biological versus physical contributions. Science. 1987; 235: 199–235. 10.3402/tellusb.v64i0.17260.
  • Craig H, Weiss R. F. Dissolved gas saturation anomalies and excess helium in the ocean. Earth Planet. Sci. Letts. 1971; 10: 289–296. 10.3402/tellusb.v64i0.17260.
  • Crawford G. B, Farmer D. M. On the spatial distribution of bubbles generated by breaking waves. J. Geophys. Res. 1987; 92(C8): 8231–8242. 10.3402/tellusb.v64i0.17260.
  • Deane G. B, Stokes D. Scale dependence of bubble creation mechanisms in breaking waves. Nature. 2002; 418: 839–844. 10.3402/tellusb.v64i0.17260.
  • Emerson S. Seasonal oxygen cycles and biological new production in surface water of the subarctic Pacific Ocean. J. Geophys. Res. 1987; 92: 6535–6544. 10.3402/tellusb.v64i0.17260.
  • Emerson S, Quay P, Stump C, Wilbur D, Knox M. O2, Ar, N2 and 222Rn in surface water of the subarctic Pacific Ocean: net biological O2 production. Global Biogeochem. Cycl. 1991; 5: 49–69. 10.3402/tellusb.v64i0.17260.
  • Erickson D. J, Merril J. T, Duce R. A. Seasonal estimates of global oceanic whitecap coverage. J. Geophys. Res. 1986; 91: 12975–12977. 10.3402/tellusb.v64i0.17260.
  • Fairall C. W, Hare J. E, Edson J. B, McGillis W. R. Parameterization and micrometeorological measurement of air-sea gas transfer. Science. 2000; 96: 63–105.
  • Feely R. A, Sabine C. L, Lee K, Berelson W, Kleypas J, co-authors.. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. J. Geophys. Res. 2004; 305: 362–366. 10.3402/tellusb.v64i0.17260.
  • Fuchs G, Roether W, Schlosser P. Excess 3He in the ocean surface layer. Geophys. Res. Lett. 1987; 92: 6559–6568. 10.3402/tellusb.v64i0.17260.
  • Garcia, H. E, Boyer, T. P, Levitus, S, Locarnini, R. A and Antonov, J. 2005. On the variability of dissolved oxygen and apparent oxygen utilization content for the upper world ocean: 1955 to 1998. 32: L09604. 10.3402/tellusb.v64i0.17260.
  • Garcia, H. E, Locarnini, R. A, Boyer, T. P and Antonov, J. I. 2006. World Ocean Atlas 2005, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. (S.Levitus). NOAA Atlas NESDIS 63: U.S. Government Printing OfficeWashington, DC, 342. pp.
  • Hamme, R. C and Emerson, S. R. 2002. Mechanisms controlling the global oceanic distribution of the inert gases argon, nitrogen and neon. J. Mar. Res. 29(23): 2120. 10.3402/tellusb.v64i0.17260.
  • Hamme R. C, Emerson S. R. Constraining bubble dynamics and mixing with dissolved gases: implications for productivity measurements by oxygen mass balance. Geophys. Res. Lett. 2006; 64(1): 73–95. 10.3402/tellusb.v64i0.17260.
  • Ho D. T, Law C. S, Smith M. J, Schlosser P, Harvey M, co-authors.. Measurements of air–sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations. J. Phys. Oceanogr. 2006; 33: L16611.10.3402/tellusb.v64i0.17260.
  • Hwang P. A, Hsu Y. H. L, Wu J. Air bubbles produced by breaking wind waves: a laboratory study. J. Geophys. Res. 1990; 20: 19–28.
  • Jenkins W. J. The use of anthropogenic tritium and helium-3 to study subtropical gyre ventilation and circulation. J. Mar. Res. 1988; A 325: 43–61. 10.3402/tellusb.v64i0.17260.
  • Jähne B, Münnich K. O, Bösinger R, Dutzi A, Huber W, co-authors.. On the parameters influencing air–water gas exchange. Proc. USA Natl. Acad. Sci. 1987; 92: 1937–1949. 10.3402/tellusb.v64i0.17260.
  • Keeling R. F. Role of bubbles in air–sea gas exchange. Global Biogeochem. Cycles. 1993; 51: 237–271. 10.3402/tellusb.v64i0.17260.
  • Keeling R. F, Garcia H. E. The change in oceanic O2 inventory associated with recent global warwing. Nature. 2002; 99: 7848–7853. 10.3402/tellusb.v64i0.17260.
  • Keeling R. F, Najjar R. P, Bender M. L, Tans P. P. What atmospheric oxygen measurements can tell us about the global carbon cycle. Tellus. 1993; 7: 37–67. 10.3402/tellusb.v64i0.17260.
  • Keeling R. F, Piper S. C, Heimann M. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Oceanology. 1996; 381: 218–221. 10.3402/tellusb.v64i0.17260.
  • Koga M. Bubble entrainment in breaking wind waves. Nature. 1982; 34: 481–489. 10.3402/tellusb.v64i0.17260.
  • Kolovayev P. A. Investigation of the concentration and statistical size distribution of wind-produced bubbles in the near-surface ocean layer. 1976; 15: 659–661.
  • Lamarre E, Melville W. K. Air entrainment and dissipation in breaking waves. 1991; 351: 469–472. 10.3402/tellusb.v64i0.17260.
  • Lee K, Wanninkhof R, Takahashi T, Doney S. C, Feely R. A. Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide. Marine Chem. 1998; 396: 155–159. 10.3402/tellusb.v64i0.17260.
  • Levich V. G. Physicochemical Hydrodynamics. Prentice-Hall: Englewood Cliffs NJ, 1962
  • Liss, P. S and Merlivat, L. 1983. Air–sea gas exchange rates: introduction and synthesis. In: The Role of Air–sea Exchange in Geochemical Cycling. (P.Buat-Menard). Reidel Publishing Co.: Dordrecht, pp. 113–129.
  • McGillis W. R, Edson J. B, Ware J. D, Dacey J. W. H, Hare J. E, co-authors.. Carbon dioxide flux techniques performed during GasEx-98. J. Mar. Sys. 2001; 75: 267–280. 10.3402/tellusb.v64i0.17260.
  • McGillis, W. R, Edson, J. B, Zappa, C. J, Ware, J. D, McKenna, S. P. and co-authors. 2004. Air–sea CO2 exchange in the equatorial Pacific. Tellus. 109(C08S02): 10.3402/tellusb.v64i0.17260.
  • McNeil C, D'Asro E. Parameterization of air–sea gas fluxes at extreme wind speeds. J. Geophys. Res. 2007; 66: 110–121. 10.3402/tellusb.v64i0.17260.
  • Melville W. K. The role of surface-wave breaking in air-sea interaction. 1996; 28: 279–321. 10.3402/tellusb.v64i0.17260.
  • Memery L, Merliva L. Modelling of gas flux through bubbles at the air–water interface. J. Phys. Oceanogr. 1985; 37B: 272–285. 10.3402/tellusb.v64i0.17260.
  • Merlivat L, Memery L. Gas exchange across an air–water interface: experimental results and modeling of bubble contribution to transfer. 1983; 88: 707–724. 10.3402/tellusb.v64i0.17260.
  • Monahan E. C. 2002. The physical and practical implications of a CO2 gas transfer coefficient that varies as the Cube of wind speed. In: Gas Transfer at Water Surfaces. (M. A.Donelan, W. M.Drennan, E. S.Saltzman and R.Wanninkhof). American Geophysical Union: Washington DC, pp. 193–197.
  • Monahan E. C, O'Muircheartaigh I. G. Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J. Geophys. Res. 1980; 10: 2094–2099.
  • Monahan, E. C and Spillane, M. C. 1984. The role of oceanic whitecaps in air–sea gas exchange. In: Gas Transfer at Water Surfaces . (W.Brutsaert and G. H.Jiaka). Reidel Publishing Co.: Dordrecht, pp. 495–503.
  • Monahan, E. C and Torgersen, T. 1990. The enhancement of air–sea gas exchange by oceanic whitecapping. In: Air–Water Mass Transfer. (S. C.Wilhelms and J. S.Gulliver). American Society of Civil Engineers: New YorkNY, pp. 608–617.
  • Monahan E. C, Zeitlow C. R. Laboratory comparisons of fresh-water and salt-water whitecaps. 1969; 74: 6961–6966. 10.3402/tellusb.v64i0.17260.
  • Nightingale P. D, Malin G, Law C. S, Watson A. J, Liss P. S, co-authors.. In situ evaluation of air–sea gas exchange parameterizations using novel conservative and volatile tracers. 2000; 14: 373–387. 10.3402/tellusb.v64i0.17260.
  • Orr J. C, Fabry V. J, Aumont O, Bopp L, Doney S. C, co-authors.. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Science. 2005; 437: 681–686. 10.3402/tellusb.v64i0.17260.
  • Prentice, I. C. 2001. The carbon cycle and atmospheric carbon dioxide. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment of the Intergovernmental Panel on Climate Changes. (J. T.Houghton, Y.Ding, D.J.Griggs, M.Noguer, P.J.van der Linden, X.Dai, K.Maskell, and C.A.Johnson). Cambridge University Press: New YorkNY, pp. 183–237.
  • Sabine C. L, Feely R. A, Gruber N, Key R. M, Lee K, co-authors.. The oceanic sink for anthropogenic CO2. Deep-Sea Res. II. 2004; 305: 367–371. 10.3402/tellusb.v64i0.17260.
  • Sarmiento J. L, Gruber N. Sinks for anthropogenic carbon. J. Phys. Oceanogr. 2002; 55(8): 30–36. 10.3402/tellusb.v64i0.17260.
  • Schudlich B, Emerson S. Gas supersaturation in the surface ocean: the roles of heat flux, gas exchange, and bubbles. J. Mar. Res. 1996; 43: 569–589. 10.3402/tellusb.v64i0.17260.
  • Soloviev A. V, Schlüssel P. Parameterization of the temperature difference across the cool skin of the ocean and of the air–ocean gas transfer on the basis of modelling surface renewal. Deep-Sea Res. II. 1994; 24: 1339–1346.
  • Spitzer W. S, Jenkins W. J. Rates of vertical mixing, gas exchange, and new production: estimations from seasonal gas cycles in the upper ocean near Bermuda. Deep-Sea Res. II. 1989; 47: 169–196. 10.3402/tellusb.v64i0.17260.
  • Takahashi T, Sutherland S. C, Sweeney C, Poisson A, Metzl N, co-authors.. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. 2002; 49: 1601–1622. 10.3402/tellusb.v64i0.17260.
  • Takahashi, T, Sutherland, S. C, Wanninkhof, R. ,Sweeney, C, Feely, R. A. and co authors. . 2009. Climatological mean and decadal changes in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Phil. Trans. Royal Soc. London. 56: 554–577.
  • Thorpe S. A. On the role of clouds of bubbles formed by breaking waves in deep water and their role in air–sea gas transfer. 1982; A304: 155–210.
  • Wanninkhof R. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 1992; 97: 7373–7382. 10.3402/tellusb.v64i0.17260.
  • Wanninkhof R, Asher W. E, Ho D. T, Sweeney C, McGillis W. R. Advances in quantifying air–sea gas exchange and environmental forcing. Ann. Rev. Marine Sci. 2009; 1: 213–244. 10.3402/tellusb.v64i0.17260.
  • Wanninkhof R, McGillis W. M. A cubic relationship between gas transfer and windspeed. Geophys. Res. Lett. 1999; 26: 1889–1892. 10.3402/tellusb.v64i0.17260.
  • Weiss R. F. Carbon dioxide in water and seawater: the solution of a non-ideal gas. Mar. Chem. 1974; 2: 203–215. 10.3402/tellusb.v64i0.17260.
  • Wentz F. J, Peteherch S, Thomas L. A. A model function for ocean radar cross section at 14.6 Ghz. J. Geophys. Res. 1984; 89: 3689–3704. 10.3402/tellusb.v64i0.17260.
  • Woolf, D. K. 1997. Bubbles and their role in air–sea gas exchange. In: The Sea Surface and Global Change. (Liss, P. S. and Duce, R. A.). Cambridge University Press. pp. 173–205.
  • Woolf D. K. Parameterization of gas transfer velocities and sea-state-dependent wave breaking. Tellus. 2005; 57B: 87–94.
  • Woolf D. K, Thorpe S. A. Bubbles and the air–sea exchange of gases in near-saturation conditions. J. Mar. Res. 1991; 49: 435–466. 10.3402/tellusb.v64i0.17260.
  • Woolf D. K, Leifer I. S, Nightingale P. D, Rhee T. S, Bowyer P, co-authors.. Modelling of bubble-mediated gas transfer: fundamental principles and a laboratory test. J. Mar. Sys. 2007; 66: 71–91. 10.3402/tellusb.v64i0.17260.
  • Zhao D, Toba Y. Dependence of whitecap coverage on wind and wind-wave properties. 2001; 57: 603–616. 10.3402/tellusb.v64i0.17260.