1,273
Views
24
CrossRef citations to date
0
Altmetric
Original Research Articles

Numerical simulation of clouds and precipitation depending on different relationships between aerosol and cloud droplet spectral dispersion

, , , , &
Article: 19054 | Received 26 Jun 2012, Accepted 27 Jan 2013, Published online: 15 Feb 2013

References

  • Albrecht B. A. Aerosols, cloud microphysics and fractional cloudiness. Science. 1989; 245: 1227–1230. 10.3402/tellusb.v65i0.19054.
  • Altaratz O, Koren I, Reisin T, Kostinski A, Feingold G, co-authors. Aerosols’ influence on the interplay between condensation, evaporation and rain in warm cumulus cloud. Atmos. Chem. Phys. 2008; 8: 15–24. 10.3402/tellusb.v65i0.19054.
  • Berg, W, L'Ecuyer, T and van den Heever, S. 2008. Evidence for the impact of aerosols on the onset and microphysical properties of rainfall from a combination of satellite observations and cloud-resolving model simulations. J. Geophys. Res. 113: D14S23. DOI: 10.3402/tellusb.v65i0.19054.
  • Brenguier, J.-L, Burnet, F and Geoffroy, O. 2011. Cloud optical thickness and liquid water path does the k coefficient vary with droplet concentration?. Atmos. Chem. Phys. 11: 9771–9786. DOI: 10.3402/tellusb.v65i0.19054.
  • Chen Y, Penner J. E. Uncertainty analysis for estimates of the first indirect aerosol effect. Atmos. Chem. Phys. 2005; 5: 2935–2948. 10.3402/tellusb.v65i0.19054.
  • Chen, Y.-C, Xue, L, Lebi, Z. J, Wang, H, Rasmussen, R. M. and co-authors. 2011. A comprehensive numerical study of aerosol-cloud-precipitation interactions in marine stratocumulus. Atmos. Chem. Phys. 11: 9749–9769. DOI: 10.3402/tellusb.v65i0.19054.
  • Cheng, C.-T, Wang, W.-C and Chen, J.-P. 2007. A modeling study of aerosol impacts on cloud microphysics and radiative properties. Q. J. R. Meteorol. Soc. 133: 283–297. DOI: 10.3402/tellusb.v65i0.19054.
  • Cui, Z, Carslaw, K. S, Yin Y and Davies, S. 2006. A numerical study of aerosol effects on the dynamics and microphysics of a deep convective cloud in a continental environment. J. Geophys. Res. 111: D05201. DOI: 10.3402/tellusb.v65i0.19054.
  • Daum, P. H, Liu, Y, McGraw, R. L, Lee, Y, Wang, J. and co-authors. 2007. Microphysical properties of stratus/stratocumulus clouds during the 2005 marine stratus/stratocumulus experiment (MASE). Report BNL-77935-2007-JA, Brookhaven National Laboratory, Upton, NY.
  • Del Genio A. D, Yao M, Kovari W, Lo K. K. A prognostic cloud water parameterization for climate models. J. Clim. 1996; 9: 270–304.
  • Fan, J, Yuan, T, Comstock, J. M, Ghan, S, Khain, A. and co-authors. 2009. Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res. 114: D22206. DOI: 10.3402/tellusb.v65i0.19054.
  • Fan, J, Zhang, R, Li, G and Tao, W.-K. 2007a. Effects of aerosols and relative humidity on cumulus clouds. J. Geophys. Res. 112: D14204. DOI: 10.3402/tellusb.v65i0.19054.
  • Fan, J, Zhang, R, Li, G, Tao, W.-K and Li, X. 2007b. Simulations of cumulus clouds using a spectral microphysics cloud-resolving model. J. Geophys. Res. 112: D04201. DOI: 10.3402/tellusb.v65i0.19054.
  • Grabowski W. W. Toward cloud resolving modeling of large-scale tropical circulations: a simple cloud microphysics parameterization. J. Atmos. Sci. 1998; 55: 3283–3298.
  • van den Heever S. C, Carrió G. G, Cotton W. R, DeMott P. J, Prenni A. J. Impacts of nucleating aerosol on florida storms. Part I: Mesoscale simulations. J. Atmos. Sci. 2006; 63: 1752–1775. 10.3402/tellusb.v65i0.19054.
  • van den Heever S. C, Cotton W. R. Urban aerosol impacts on downwind convective storms. J. Appl. Meteorol. Clim. 2007; 46: 828–850. 10.3402/tellusb.v65i0.19054.
  • van den Heever, S. C, Stephens, G. L and Wood, N. B. 2011. Aerosol indirect effects on tropical convection characteristics under conditions of radiative-convective equilibrium. J. Atmos. Sci. 68: 699–718. DOI: 10.3402/tellusb.v65i0.19054.
  • Hobbs, P. V. 1993. Aerosol-Cloud-Climate Interactions. Academic Press, San Diego, Calif,.233. pp.
  • Khain, A, Ovtchinnikov, M, Pinsky, M, Pokrovsky, A and Krugliak, H. 2000. Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res. 55: 159–224. DOI: 10.3402/tellusb.v65i0.19054.
  • Khain A, Pokrovsky A. Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part II: sensitivity study. J. Atmos. Sci. 2004; 61: 2983–3001. 10.3402/tellusb.v65i0.19054.
  • Khain A, Pokrovsky A, Pinsky M, Seifert A, Phillips V. Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: model description and possible applications. J. Atmos. Sci. 2004; 61: 2963–2982. 10.3402/tellusb.v65i0.19054.
  • Khain A, Rosenfeld D, Pokrovsky A. Aerosol impact on the dynamics and microphysics of deep convective clouds. Q. J. R. Meteorol. Soc. 2005; 131: 2639–2663. 10.3402/tellusb.v65i0.19054.
  • Khain, A. P, BenMoshe, N and Pokrovsky, A. 2008. Factors determining the impact of aerosols on surface precipitation from clouds: an attempt at classification. J. Atmos. Sci. 65: 1721–1748. DOI: 10.3402/tellusb.v65i0.19054.
  • Khairoutdinov M, Kogan Y. A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev. 2000; 128: 229–243.
  • Lebo, Z. J, Morrison, H and Seinfeld, J. H. 2012. Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment?. Atmos. Chem. Phys. 12: 9941–9964. DOI: 10.3402/tellusb.v65i0.19054.
  • Lebo, Z. J and Seinfeld, J. H. 2011. Theoretical basis for convective invigoration due to increased aerosol concentration. Atmos. Chem. Phys. 11: 5407–5429. DOI: 10.3402/tellusb.v65i0.19054.
  • Lee, S. S. 2011. Dependence of aerosol-precipitation interactions on humidity in a multiple-cloud system. Atmos. Chem. Phys. 11: 2179–2196. DOI: 10.3402/tellusb.v65i0.19054.
  • Li, G, Wang, Y, Lee, K.-H, Diao, Y and Zhang, R. 2009. Impacts of aerosols on the development and precipitation of a mesoscale squall line. J. Geophys. Res. 114: D17205. DOI: 10.3402/tellusb.v65i0.19054.
  • Li, G, Wang, Y and Zhang, R. 2008. Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol-cloud interaction. J. Geophys. Res. 113: D15211. DOI: 10.3402/tellusb.v65i0.19054.
  • Lim, K.-S. S and Hong, S.-Y. 2010. Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models. Mon. Wea. Rev. 138: 1587–1612. DOI: 10.3402/tellusb.v65i0.19054.
  • Lim, K.-S. S, Hong, S.-Y, Yum, S. S, Dudhia, J and Klemp, J. B. 2011. Aerosol effects on the development of a supercell storm in a double-moment bulk-cloud microphysics scheme. J. Geophys. Res. 116: D02204. DOI: 10.3402/tellusb.v65i0.19054.
  • Liu Y, Daum P. H. Indirect warming effect from dispersion forcing. Nature. 2002; 419: 580–581. 10.3402/tellusb.v65i0.19054.
  • Liu Y, Daum P. H. Parameterization of the autoconversion process. Part I: analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci. 2004; 61: 1539–1548.
  • Liu, Y, Daum, P. H, Guo, H and Peng, Y. 2008. Dispersion bias, dispersion effect and aerosol-cloud conundrum. Environ. Res. Lett. 3: 045021. DOI: 10.3402/tellusb.v65i0.19054.
  • Liu, Y, Daum, P. H and McGraw, R. L. 2005. Size truncation effect, threshold behavior, and a new type of autoconversion parameterization. Geophys. Res. Lett. 32: L11811. DOI: 10.3402/tellusb.v65i0.19054.
  • Liu Y, Daum P. H, McGraw R, Miller M. Parameterization of the autoconversion process. Part II: generalization of Sundqvist-type parameterizations. J. Atmos. Sci. 2006a; 63: 1103–1109. 10.3402/tellusb.v65i0.19054.
  • Liu, Y, Daum, P. H and Yum, S. S. 2006b. Analytical expression for the relative dispersion of the cloud droplet size distribution. Geophys. Res. Lett. 33: L02810. DOI: 10.3402/tellusb.v65i0.19054.
  • Lu, M.-L and Seinfeld, J. H. 2006. Effect of aerosol number concentration on cloud droplet dispersion: a large-eddy simulation study and implications for aerosol indirect forcing. J. Geophys. Res. 111: D02207. DOI: 10.3402/tellusb.v65i0.19054.
  • Lynn B, Khain A, Dudhia J, Rosenfeld D, Povrovsky A, co-authors B. Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part I: model description and first results. Mon. Weather Rev. 2005; 133: 44–58. 10.3402/tellusb.v65i0.19054.
  • Lynn, B, Khain, A, Rosenfeld, D and Woodley, W. L. 2007. Effects of aerosols on precipitation from orographic clouds. J. Geophys. Res. 112: D10225. DOI: 10.3402/tellusb.v65i0.19054.
  • Ma, J, Chen, Y, Wang, W, Yan, P, Liu, H. and co-authors. 2010. Strong air pollution causes widespread haze-clouds over china. J. Geophys. Res. 115: D18204. DOI: 10.3402/tellusb.v65i0.19054.
  • Martin G. M, Johnson D. W, Spice A. The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci. 1994; 51: 1823–1842.
  • Martins, J. A and Silva Dias, M. A. F. 2009. The impact of smoke from forest fires on the spectral dispersion of cloud droplet size distributions in the Amazonian region. Environ. Res. Lett. 4: 015002. DOI: 10.3402/tellusb.v65i0.19054.
  • Miles N, Verlinde J, Clothiaux E. Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci. 2000; 57: 295–311.
  • Morrison, H. 2012. On the robustness of aerosol effects on an idealized supercell storm simulated with a cloud system-resolving model. Atmos. Chem. Phys. 12: 7689–7705. DOI: 10.3402/tellusb.v65i0.19054.
  • Morrison H, Curry J. A, Khvorostyanov V. I. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: description. J. Atmos. Sci. 2005; 62: 1665–1677. 10.3402/tellusb.v65i0.19054.
  • Morrison H, Grabowski W. W. Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci. 2007; 64: 2839–2861. 10.3402/tellusb.v65i0.19054.
  • Morrison H, Thompson G, Tatarskii V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one- and two-moment schemes. Mon. Weather Rev. 2009; 137: 991–1007. 10.3402/tellusb.v65i0.19054.
  • Pawlowska H, Brenguier J.-L. Microphysical properties of stratocumulus clouds during ACE-2. Tellus B. 2000; 52: 868–887. 10.3402/tellusb.v65i0.19054.
  • Pawlowska, H, Grabowski, W. W and Brenguier, J.-L. 2006. Observations of the width of cloud droplet spectra in stratocumulus. Geophys. Res. Lett. 33: L19810. DOI: 10.3402/tellusb.v65i0.19054.
  • Peng, Y and Lohmann, U. 2003. Sensitivity study of the spectral dispersion of the cloud droplet size distribution on the indirect aerosol effect. Geophys. Res. Lett. 30(10): 1507. DOI: 10.3402/tellusb.v65i0.19054.
  • Peng, Y, Lohmann, U, Leaitch, R and Kulmala, M. 2007. An investigation into the aerosol dispersion effect through the activation process in marine stratus clouds. J. Geophys. Res. 112: D11117. DOI: 10.3402/tellusb.v65i0.19054.
  • Pruppacher, H. R and Klett, J. D. 1997. Microphysics of Clouds and Precipitation. Kluwer Academic, Dordrecht and Boston.,954. pp.
  • Ramanathan V, Crutzen P. J, Kiehl J. T, Rosenfeld D. Aerosols, climate, and the hydrological cycle. Science. 2001; 294: 2119–2124. 10.3402/tellusb.v65i0.19054.
  • Rosenfeld, D. 1999. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. 26: 3105–3108. DOI: 10.3402/tellusb.v65i0.19054.
  • Rosenfeld, D, Lohmann U, Raga, G. B, O'Dowd, C. D, Kulmala, M. and co-authors. 2008. Flood or drought: how do aerosols affect precipitation?. Science. 321: 1309., DOI: 10.3402/tellusb.v65i0.19054.
  • Rotstayn L. D, Liu Y. Sensitivity of the first indirect aerosol effect to an increase of cloud droplet spectral dispersion with droplet number concentration. J Clim. 2003; 16: 3476–3481.
  • Rotstayn, L. D and Liu, Y. 2005. A smaller global estimate of the second indirect aerosol effect. Geophys. Res. Lett. 32: L05708. DOI: 10.3402/tellusb.v65i0.19054.
  • Rudich, Y, Rosenfeld, D and Khersonsky, O. 2002. Treating clouds with a grain of salt. Geophys. Res. Lett. 29(22): 2060. DOI: 10.3402/tellusb.v65i0.19054.
  • Seifert, A and Beheng, K. D. 2006. A two-moment cloud microphysics parameterization for mixed-phase clouds. Part II: maritime vs. continental deep convective storms. Meteorol. Atmos. Phys. 92: 67–82. DOI: 10.3402/tellusb.v65i0.19054.
  • Shepherd J. M, Burian S. J. Detection of urban-induced rainfall anomalies in a major coastal city. Earth Interactions. 2003; 7: 1–14.
  • Simpson J, Wiggert V. Models of precipitating cumulus towers. Mon. Wea. Rev. 1969; 97: 471–489.
  • Skamarock, W. C, Klemp, J. B, Dudhia, J, Gill, D. O, Barker, D. M. and co-authors. 2005. A description of the advanced research WRF Version 2. NCAR Tech. Note NCAR-TN-468+STR, 113. pp.
  • Squires P. The microstructure and colloidal stability of warm clouds. I. The relation between structure and stability. Tellus. 1958; 10: 256–271. 10.3402/tellusb.v65i0.19054.
  • Storer, R. L, van den Heever, S. C and Stephens, G. L. 2010. Modeling aerosol impacts on convective storms in different environments. J. Atmos. Sci. 67: 3904–3915. DOI: 10.3402/tellusb.v65i0.19054.
  • Sundqvist H, Berge E, Kristjansson J. E. Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev. 1989; 117: 1641–1657.
  • Tao, W.-K, Chen, J.-P, Li, Z, Wang, C and Zhang, C. 2012. Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 50: RG2001. DOI: 10.3402/tellusb.v65i0.19054.
  • Tao, W.-K, Li, X, Khain, A, Matsui, T, Lang, S. and co-authors. 2007. Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res. 112: D24S18. DOI: 10.3402/tellusb.v65i0.19054.
  • Teller A, Levin Z. The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model. Atmos. Chem. Phys. 2006; 6: 67–80. 10.3402/tellusb.v65i0.19054.
  • Twomey S. A. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 1977; 34: 1149–1152.
  • Wang, C. 2005. A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics. J. Geophys. Res. 110: D21211. DOI: 10.3402/tellusb.v65i0.19054.
  • Wang, X, Xue, H, Fang, W and Zheng, G. 2011. A study of shallow cumulus cloud droplet dispersion by large eddy simulations. Acta Meteor. Sinica. 25(2): 166–175. DOI: 10.3402/tellusb.v65i0.19054.
  • Wood R. Parametrization of the effect of drizzle upon the droplet effective radius in stratocumulus clouds. Q. J. R. Meteorol. Soc. 2000; 126: 3309–3324. 10.3402/tellusb.v65i0.19054.
  • Xie, X. N and Liu, X. D. 2009. Analytical three-moment auto conversion parameterization based on generalized gamma distribution. J. Geophys. Res. 114: D17201. DOI: 10.3402/tellusb.v65i0.19054.
  • Xie, X. N and Liu, X. D. 2011. Effects of spectral dispersion on clouds and precipitation in mesoscale convective systems. J. Geophys. Res. 116: D06202. DOI: 10.3402/tellusb.v65i0.19054.
  • Yin Y, Levin Z, Reisin T, Tzivion S. The effects of giant cloud condensational nuclei on the development of precipitation in convective clouds: a numerical study. Atmos. Res. 2000; 53: 91–116. 10.3402/tellusb.v65i0.19054.
  • Yin, Y, Wurzler, S, Levin, Z and Reisin, T. G. 2002. Interactions of mineral dust particles and clouds: effects on precipitation and cloud optical properties. J. Geophys. Res. 107(D23): 4724. DOI: 10.3402/tellusb.v65i0.19054.
  • Yum S. S, Hudson J. G. Adiabatic predictions and observations of cloud droplet spectral broadness. Atmos. Res. 2005; 73: 203–223. 10.3402/tellusb.v65i0.19054.
  • Zhao, C, Tie, X, Brasseur, G, Noone, K. J, Nakajima, T. and co-authors. 2006. Aircraft measurements of cloud droplet spectral dispersion and implications for indirect aerosol radiative forcing. Geophys. Res. Lett. 33: L16809. DOI: 10.3402/tellusb.v65i0.19054.