814
Views
9
CrossRef citations to date
0
Altmetric
Original Research Articles

Spatio-temporal variability of CO and O3 in Hyderabad (17°N, 78°E), central India, based on MOZAIC and TES observations and WRF-Chem and MOZART-4 models

, , &
Article: 30545 | Received 27 Nov 2015, Accepted 13 Apr 2016, Published online: 30 May 2016

References

  • Arakawa A. , Schubert W. H . Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci. 1974; 31: 674–701. DOI: http://dx.doi.org/10.1175/1520–0469 .
  • Beig G. , Brasseur G. P . Influence of anthropogenic emissions on tropospheric ozone and its precursors over the Indian tropical region during a monsoon. Geophys. Res. Lett. 2006; 33: L07808. DOI: http://dx.doi.org/10.1029/2005GL024949 .
  • Betts A. K. , Miller M. J . A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q. J. Roy. Meteorol. Soc. 1986; 112(473): 693–709. DOI: http://dx.doi.org/10.1002/qj.49711247308 .
  • Brasseur G. P. , Hauglustaine D. A. , Walters S. , Rasch P. J. , Müller J.-F. , co-authors . MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description. J. Geophys. Res. Atmos. 1998; 103(D21): 28265–28289. DOI: http://dx.doi.org/10.1029/98JD02397 .
  • Chen F. , Dudhia J . Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system, part I: model description and implementation. Mon. Weather Rev. 2001; 129: 569–585. DOI: http://dx.doi.org/10.1175/1520–0493 .
  • Chou M.-D. , Suarez M. J. , Ho C.-H. , Yan M. M.-H. , Lee K.-T . Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J. Clim. 1998; 11: 202–214. DOI: http://dx.doi.org/10.1175/1520–0442(1998) .
  • Cofala J. , Amann M. , Klimont Z. , Kupiainen K. , Höglund-Isaksson L . Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmos. Environ. 2007; 41(38): 8486–8499. DOI: http://dx.doi.org/10.1016/j.atmosenv.2007.07.010 .
  • Cooper O. R. , Parrish D.D. , Stohl A. , Trainer M. , Nédélec P. , co-authors . Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature. 2010; 463: 344–348. DOI: http://dx.doi.org/10.1038/nature08708 .
  • Duncan B. N. , Logan J. A. , Bey I. , Megretskaia I. A. , Yantosca R. M. , co-authors . Global budget of co, 1988–1997: source estimates and validation with a global model. J. Geophys. Res. Atmos. 2007; 112: D22301. DOI: http://dx.doi.org/10.1029/2007JD008459 .
  • Emmons L. K. , Hauglustaine D. A. , Müller J-F. , Carroll M. A. , Brasseur G. P. , co-authors . Data composites of airborne observations of tropospheric ozone and its precursors. J. Geophys. Res. 2000; 105: 20497–20538.
  • Emmons L. K. , Walters S. , Hess P.G. , Lamarque J-F. , Pfister G.G. , co-authors . Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 2010; 3: 43–67. DOI: http://dx.doi.org/10.5194/gmd–3–43–2010 .
  • Fishman J. , Solomon S. , Crutzen P. J . Observational and theoretical evidence in support of a significant in situ photochemical source of tropospheric ozone. Tellus. 1979; 31: 432–446.
  • Gauss M. , Myhre G. , Pitari G. , Prather M. J. , Isaksen I. S. A. , co-authors . Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere. J. Geophys. Res Atmos. 2003; 108: D9. DOI: http://dx.doi.org/10.1029/2002JD002624 .
  • Ghude S. D. , Lal D. M. , Beig G. , van der A., R. , Sable D . Rain-induced soil NOx emission from India during the onset of the summer monsoon: a satellite perspective. J. Geophys. Res. Atmos. 2010; 115: D16304. DOI: http://dx.doi.org/10.1029/2009JD013367 .
  • Ghude S. D. , Pfister G. G. , Jena C. , van der A., R. J. , Emmons L. K. , co-authors . Satellite constraints of nitrogen oxide (NOx) emissions from India based on OMI observations and WRF-Chem simulations. Geophys. Res. Lett. 2013; 40: 1–6. DOI: http://dx.doi.org/10.1029/2012GL053926 .
  • Girach I. , Nair P. R . Carbon monoxide over Indian region as observed by MOPITT. Atmos. Environ. 2014; 99: 599–609.
  • Granier C. , Bessagnet B. , Bond T. , D'Angiola A. , Denier van der Gon H. , co-authors . Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Clim. Change. 2011; 9(1): 163–190.
  • Grell G. A. , Dévényi D . A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002; 29(14): 38–1–38–4. DOI: http://dx.doi.org/10.1029/2002GL015311 .
  • Guenther A. , Karl T. , Harley P. , Wiedinmyer C. , Palmer P. I. , Geron C . Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006; 6: 3181–3210. DOI: http://dx.doi.org/10.5194/acp–6–3181–2006 .
  • Gummeneni S. , Yusup Y. B. , Chavali M. , Samadi S. Z . Source apportionment of particulate matter in the ambient air of Hyderabad city, India. Atmos. Res. 2011; 101: 752–754.
  • Gurjar B. R. , van Aardenne J. A. , Lelieveld J. , Mohan M . Emission estimates and trends (1990–2000) for megacity Delhi and implications. Atmos. Environ. 2004; 38(33): 5663–5681. DOI: http://dx.doi.org/10.1016/j.atmosenv.2004.05.057 .
  • Hack J. J. , Boville B. A. , Kiehl J. T. , Rasch P. J. , Williamson D. L . Climate statistics from the National Center for Atmospheric Research Community Climate Model CCM2. J. Geophys. Res. Atmos. 1994; 99: 20785–20813. DOI: http://dx.doi.org/10.1029/94JD01570 .
  • Holloway T. , Levy I. H. , Kasibhatla P . Global distribution of carbon monoxide. J. Geophys. Res. 2000; 105: 12123–12112.
  • Holstlag A. , Boville B. A . Local versus nonlocal boundary-layer diffusion in a global climate model. J. Clim. 1993; 6: 1825–1842.
  • Horowitz L. W. , Walters S. , Mauzerall D. L. , Emmons L. K. , Rasch P. J. , co-authors . A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, version 2. J. Geophys. Res. Atmos. 2003; 108: 4784. DOI: http://dx.doi.org/10.1029/2002JD002853 .
  • Hu X.-M. , Nielsen-Gammon J. W. , Zhang F. Q . Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteorol. Climatol. 2010; 49(9): 1831–1844. DOI: http://dx.doi.org/10.1175/2010jamc2432.1 .
  • Janjić Z. I . The step-mountain coordinate: physical package. Mon. Weather Rev. 1990; 118: 1429–1443. DOI: http://dx.doi.org/10.1175/1520–0493(1990) .
  • Kain J. S . The Kain–Fritsch convective parameterization: an update. J. Appl. Meteorol. 2004; 43: 170–181.
  • Kain J. S. , Fritsch J. M . A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 1990; 47: 2784–2802.
  • Khalil M. A. K. , Rasmussen R. A . Global decrease in atmospheric carbon monoxide. Nature. 1994; 370: 639–641.
  • Kulkarni P. S. , Ghude S. D. , Bortoli D . Tropospheric ozone (TOR) trend over three major inland Indian cities: Delhi, Hyderabad and Bangalore. Ann. Geophys. 2010; 28(10): 1879–1885. DOI: http://dx.doi.org/10.5194/angeo-28-1879-2010 .
  • Kurokawa J. , Ohara T. , Morikawa T. , Hanayama S. , Janssens-Maenhout G. , co-authors . Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: regional emission inventory in ASia (REAS) version 2. Atmos. Chem. Phys. 2013; 13(21): 11019–11058. DOI: http://dx.doi.org/10.5194/acp-13-11019-2013 .
  • Lamarque J.-F. , Bond T.C. , Eyring V. , Granier C. , Heil A. , co-authors . Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys. 2010; 10(15): 7017–7039. DOI: http://dx.doi.org/10.5194/acp-10-7017-2010 .
  • Law K . More ozone over North America. Nature. 2010; 463: 307–308.
  • Lin S. J. , Rood R. B . Multidimensional flux-form semi-Lagrangian transport scheme. Mon. Weather Rev. 1996; 124: 2046–2070.
  • Lopez J. P. , Luo M. , Christensen L. E. , Loewenstein M. , Jost H. , co-authors . TES carbon monoxide validation during two AVE campaigns using the ARGUS and ALIAS instruments on NASA's WB-57F. J. Geophys. Res. 2008; 113: D16S47. DOI: http://dx.doi.org/10.1029/2007JD008811 .
  • Luo M. , Rinsland C. P. , Rodgers C. D. , Logan J. A. , Worden H. , co-authors . TES carbon monoxide validation with DACOM aircraft measurements during INTEX-B 2006. J. Geophys. Res. 2007a; 112: D24S48. DOI: http://dx.doi.org/10.1029/2007JD008803 .
  • Luo M. , Rinsland C. P. , Rodgers C. D. , Logan J. A. , Worden H. , co-authors . Comparison of carbon monoxide measurements by TES and MOPITT: influence of a priori data and instrument characteristics on nadir atmospheric species retrievals. J. Geophys. Res. 2007b; 112: D09303. DOI: http://dx.doi.org/10.1029/2006JD007663 .
  • Marenco A. , Thouret V. , Nédélec P. , Smit H. , Helten M. , co-authors . Measurement of ozone and water vapour by airbus in-service aircraft: the MOZAIC airborne program, an overview. J. Geophys. Res. Atmos. 1998; 103: 25631–25642. DOI: http://dx.doi.org/10.1029/98JD00977 .
  • Mlawer E. J. , Taubaman S. J. , Brown P. D. , Iacono M. J. , Clough S. A . Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997; 102(D14): 16663–16682. DOI: http://dx.doi.org/10.1029/97JD00237 .
  • Monks P. S. , Granier C. , Fuzzi S. , Stohl A. , Williams M. L. , co-authors . Atmospheric composition change – global and regional air quality. Atmos. Environ. 2009; 43(33): 5268–5350.
  • Nakanishi M. , Niino H . An improved Mellor-Yamada Level-3 model: its numerical stability and application to a regional prediction of advection fog, boundary layer meteorology. Atmos. Environ. 2006; 119: 397–407. DOI: http://dx.doi.org/10.1007/s10546–005–9030–8 .
  • Ohara T. , Akimoto H. , Kurokawa J. , Horii N. , Yamaji K. , co-authors . An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos. Chem. Phys. Discuss. 2007; 7: 6843–6902. DOI: http://dx.doi.org/10.5194/acpd–7–6843–2007 .
  • Petropavlovskikh I. , Ahn C. , Bhartia P. K. , Flynn L. E . Comparison and covalidation of ozone anomalies and variability observed in SBUV(/2) and Umkehr Northern midlatitude ozone profile estimates. Geophys. Res. Lett. 2005; 32: L06805. DOI: http://dx.doi.org/10.1029/2004GL022002 .
  • Piegorsch W. W . Tables of P-values for T-and Chi-Square Reference Distributions. 2002; Technical Report no. 194. Department of Statistics, University of South Carolina, Columbia, SC.
  • Prasad A. K. , Singh R. P. , Kafatos M . Influence of coal based thermal power plants on aerosol optical properties in the Indo-Gangetic basin. Geophys. Res. Lett. 2006; 33: L05805. DOI: http://dx.doi.org/10.1029/2005GL023801 .
  • Prasad A. K. , Singh R. P. , Kafatos M . Influence of coal-based thermal power plants on the spatial-temporal variability of tropospheric NO2 column over India. Environ. Monit. Assess. 2011; 184: 1891–1907.
  • Sahu L. K . Volatile organic compounds and their measurements in the troposphere. Curr. Sci. 2012; 102(10): 1645–1649.
  • Sahu L. K. , Sheel V. , Kajino M. , Gunthe S. S. , Thouret V. , co-authors . Characteristics of tropospheric ozone variability over an urban site in Southeast Asia: a study based on MOZAIC and MOZART vertical profiles. J. Geophys. Res. Atmos. 2013; 118(15): 8729–8747. DOI: http://dx.doi.org/10.1002/jgrd.50662 .
  • Sahu S. K. , Beig G. , Parkhi N . Critical emissions from the largest on-road transport network in South Asia. Aerosol Air Qual. Res. 2014; 14: 135–144.
  • Sauvage B. , Martin R. V. , van Donkelaar A. , Ziemke J. R . Quantification of the factors controlling tropical tropospheric ozone and the south Atlantic maximum. J. Geophys. Res. 2007b; 112: 11309.
  • Schell B. , Ackermann I. J. , Hass H. , Binkowski F. S. , Ebel A . Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res. 2001; 106: 28275–28293. DOI: http://dx.doi.org/10.1029/2001JD000384 .
  • Schultz M. , Rast S. , van het Bolscher M. , Pulles T. , Pereira J. , co-authors . Reanalysis of the Tropospheric Chemical Composition Over the Past 40 Years, a Long-Term Global Modeling Study of Tropospheric Chemistry Funded Under the 5th EU Framework Programme. 2007. Technical Report, EU-Contract No. EVK2-CT-2002-00170, 184. Online at: http://retro.enes.org/reports/D1–6_final.pdf .
  • Seinfeld J. H. , Pandis S. N . From Air Pollution to Climate Change, Atmospheric Chemistry and Physics. 2006; New York. Atmospheric Chemistry and Physics: Wiley.
  • Sheel V. , Sahu L. K. , Kajino M. , Deushi M. , Stein O. , Nedelec P . Seasonal and interannual variability of carbon monoxide based on MOZAIC observations, MACC reanalysis, and model simulations over an urban site in India. J. Geophys. Res. Atmos. 2014; 119: 9123–9141. DOI: http://dx.doi.org/10.1002/2013JD021425 .
  • Srivastava S. , Sheel V . Study of tropospheric CO and O3 enhancement episode over Indonesia during autumn 2006 using the Model for Ozone and Related chemical Tracers (MOZART-4). Atmos. Environ. 2013; 67: 53–62. DOI: http://dx.doi.org/10.1016/j.atmosenv.2012.09.067 .
  • Stockwell W. R. , Middleton P. , Chang J. S. , Tang X . The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res. 1990; 95: 16343–16367. DOI: http://dx.doi.org/10.1029/JD095iD10p16343 .
  • Thouret V. , Marenco A. , Logan J. A. , Nédélec P. , Grouhel C . Comparisons of ozone measurements from the MOZAIC airborne program and the ozone sounding network at eight locations. J. Geophys. Res. 1998b; 103: 25695–25720.
  • Thouret V. , Marenco A. , Nédélec P. , Grouhel C . Ozone climatologies at 9–12 km altitude as seen by the MOZAIC airborne program between September 1994 and August 1996. J. Geophys. Res. 1998a; 103: 25653–25680.
  • van Vuuren D. P. , Edmonds J. , Kainuma M. , Riahi K. , Thomson A. , co-authors . The representative concentration pathways: an overview. Clim. Change. 2011; 109(1–2): 5–31. DOI: http://dx.doi.org/10.1007/s10584-011-0148-z .
  • Venkataraman C. , Habib G. , Kadamba D. , Shrivastava M. , Leon J.-F. , co-authors . Emissions from open biomass burning in India: Integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Global Biogeochem. Cycles. 2006; 20: GB2013. DOI: http://dx.doi.org/10.1029/2005GB002547 .
  • Wang Y. , Jacob D. J. , Logan J. A . Global simulation of tropospheric O3–NOx–hydrocarbon chemistry: 3. Origin of tropospheric ozone and effects of nonmethane hydrocarbons. J. Geophys. Res. Atmos. 1998; 103: 10757–10767. DOI: http://dx.doi.org/10.1029/98JD00156 .
  • Wiedinmyer C. , Akagi S. K. , Yokelson R. J. , Emmons L. K. , Al-Saadi J. A. , co-authors . The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geosci. Model Dev. 2011; 4(3): 625–641. DOI: http://dx.doi.org/10.5194/gmd–4–625–2011 .
  • Wigley T. M. L. , Smith S. J. , Prather M. J . Radiative forcing due to reactive gas emissions. J. Clim. 2002; 15: 2690–2696.
  • Worden H. M. , Deeter M. N. , Frankenberg C. , George M. , Nichitiu F. , co-authors . Decadal record of satellite carbon monoxide observations. Atmos. Chem. Phys. 2013; 13: 837–850. DOI: http://dx.doi.org/10.5194/acp–13–837–2013 .
  • Worden J. , Kulawik S. S. , Shephard M. W. , Clough S. A. , Worden H. , co-authors . Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection. J. Geophys. Res. Atmos. 2004; 109(D9): D09308, DOI: http://dx.doi.org/10.1029/2004JD004522 .
  • Zhang G. J. , MacFarlane N. A . Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmos. Ocean. 1995; 33: 407–446.
  • Zhang L. , Jacob D. J. , Liu X. , Logan J. A. , Chance K. , co-authors . Intercomparison methods for satellite measurements of atmospheric composition: application to tropospheric ozone from TES and OMI. Atmos. Chem. Phys. 2010; 10: 4725–4739. DOI: http://dx.doi.org/10.5194/acp–4710–4725–2010 .