95
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of influence of nano-reinforcement on the mechanical properties of composite materials

, , , &
Pages 425-433 | Received 16 May 2015, Accepted 08 Sep 2015, Published online: 24 Mar 2016

References

  • ACI. 2008. Guide for modeling and calculating shrinkage and creep in hardened concrete. Reported by ACI Committee 209, ACI 209.2R-08.
  • Bentur, A. 2000. Role of interfaces in controlling the durability of fiber-reinforced cements, Journal of Materials in Civil Engineering 12(1): 2–7. http://dx.doi.org/10.1061/(ASCE)0899-1561(2000)12:1(2) doi: 10.1061/(ASCE)0899-1561(2000)12:1(2)
  • Bentur, A.; Kovler, K. 2003. Evaluation of early age cracking characteristics in cementitious systems, Materials and Structures 36(3): 183–190. http://dx.doi.org/10.1007/BF02479556
  • Cheng, Y. L.; Mobasher, B. 1998. Finite element simulations of fiber pullout toughening in fiber reinforced cement based composites, Advanced Cement Based Materials 7(3–4): 123–132. doi: 10.1016/S1065-7355(97)00087-4
  • Chung, D. D. L. 2000. Cement reinforced with short carbon fibers: a multifunctional material, Composites: Part B 31: 511–526. http://dx.doi.org/10.1016/S1359-8368(99)00071-2
  • Hearn, E. J. 1997. Mechanics of materials 1. 3rd ed. Oxford: Butterwort-Heinemann. 450 p.
  • Hecht, M. 2012. Practical use of fiber-reinforced UHPC in construction – production of precast elements for Wild-Brücke in Völkermarkt, in Proceedings of Hipermat 2012, 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, 7–9 March 2012, Kassel, Germany, 889–896.
  • Htut, T. N. S.; Foster, S. J. 2010. Unified model for mixed mode fracture of steel fiber reinforced concrete, in Proc. of Fracture Mechanics of Concrete and Concrete Structures – High Performance, Fiber Reinforced Concrete, Special Loadings and Structural Applications, 23–28 May 2010, Korea Concrete Institute, Korea, 1469–1477.
  • Justs, J.; Wyrzykowski, M.; Winnefeld, F.; Bajare, D.; Lura, P. 2014. Influence of superabsorbent polymers on hydration of cement pastes with low water-to-binder ratio: a calorimetry study, Journal of Thermal Analysis and Calorimetry 115(1): 425–432. http://dx.doi.org/10.1007/s10973-013-3359-x
  • Kononova, O.; Lusis, V.; Galushchak, A.; Krasnikovs, A.; Machanovsky, A. 2012. Numerical modelling of fiber pull-out micromechanics in concrete matrix composites, Journal of Vibroengineering 14(4): 1852–1861.
  • Krasnikovs, A.; Khabaz, A.; Kononova, O. 2009. Numerical 2D Investigation of Non-metallic (glass and carbon) fiber micro-mechanical behavior in concrete matrix, Construction Science 10: 67–78. http://dx.doi.org/10.2478/v10137-009-0007-z
  • Krasnikovs, A.; Khabaz, A.; Telnova, I.; Machanovsky, A.; Klavinsh, I. 2010. Numerical 3D investigation of non-metallic (glass, carbon) fiber pull-out micromechanics (in concrete matrix), Mechanics 33: 103–108.
  • Li, V. C. 1992. Postcrack scaling relations for fiber reinforced cementitious composites, Journal of Materials in Civil Engineering 4(1): 41–57. http://dx.doi.org/10.1061/(ASCE)0899-1561(1992)4:1(41) doi: 10.1061/(ASCE)0899-1561(1992)4:1(41)
  • Li, C.; Mobasher, B. 1998. Finite element simulations of fiber pull-out toughening in fiber reinforced cement based composites, Advanced Cement Based Materials 7(3–4): 123–132. http://dx.doi.org/10.1016/S1065-7355(97)00087-4
  • Li, V. C.; Stang, H. 1997. Interface property characterization and strengthening mechanisms in fiber reinforced cement based composites, Advanced Cement Based Materials 6(1): 1–20. http://dx.doi.org/10.1016/S1065-7355(97)90001-8
  • Li, V. C.; Stang, H.; Krenchel, H. 1993. Micromechanics of crack bridging in fibre-reinforced concrete, Materials and Structures 26(8): 486–494. http://dx.doi.org/10.1007/BF02472808
  • LVS EN 12390-3:2002. Testing hardened concrete – part 3: compressive strength of test specimens. LVS/STK/15, The Latvia Road Technical Committee of Standartization, Latvijas Standarts.
  • Mobasher, B.; Li, C. Y. 1995. Modelling of stiffness degradation of the interfacial zone during fiber debonding, Composites Engineering 5(10–11): 1349–1365. http://dx.doi.org/10.1016/0961-9526(95)00056-S
  • Naaman, A. E.; Wille, K. 2012. The path to ultra-high performance fiber reinforced concrete (UHP-FRC ): five decades of progress, in Ultra-High Performance Concrete and Nanotechnology in Construction, Proceedings of Hipermat 2012, 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials Symopsium, 7–9 March 2012, Kassel, Germany, 3–15.
  • Pupurs, A. 2012. Micro-crack initiation and propagation in fiber reinforced composites: Doctoral thesis. Luleå Tekniska Universitet, Luleå. 174 p.
  • Pupurs, A.; Varna, J.; Krasnikovs, A. 2013. Energy release rate based fiber/matrix debond growth in fatigue. Part II: debond growth analysis using Paris law, Mechanics of Advanced Materials and Structures 20(4): 288–296. http://dx.doi.org/10.1080/15376494.2011.627628
  • Sanchez, F.; Sobolev, K. 2010. Nanotechnology in concrete – a review, Construction and Building Materials 24(11): 2060–2071. http://dx.doi.org/10.1016/j.conbuildmat.2010.03.014
  • Sasmal, S.; Bhuvaneshwari, B.; Iyer, N. R. 2013. Can carbon nanotubes make wonders in civil/structural engineering, Progress in Nanotechnology and Nanomaterials 2: 117–129. http://dx.doi.org/10.5963/PNN0204003
  • Schmidt, M.; Fehling, E. 2005. Ultra-high-performance concrete: Research, development and application in Europe, in Seventh International Symposium on the Utilization of High Strength/High-Performance Concrete, 20–24 June 2005, Washington D.C., USA, 51–78.
  • Stang, H.; Li, V. C.; Krenchel, H. 1995. Design and structural applications of stress-crack width relations in fibre reinforced concrete, Materials and Structures 28(4): 210–219. http://dx.doi.org/10.1007/BF02473251
  • Šahmenko, G.; Pupurs, A.; Kononova, O.; Krasņikovs, A. 2007. Non-linear post-cracking behaviour prediction method for high concentration steel fibre reinforced concrete (HCSFRC) beams, Construction Science 8: 60–70.
  • Wille, K.; Loh, K. J. 2010. Nanoengineering ultra-high-performance concrete with multiwalled carbon nanotubes, Transportation Research Record: Journal of the Transportation Research Board 2142: 119–126. http://dx.doi.org/10.3141/2142-18
  • Wille, K.; Naaman, A. E. 2010. Bond-slip behavior of steel fibers embedded in ultra high performance concrete, in Proc. of the 18th European Conference on Fracture and Damage of Advanced Fiber-Reinforced Cement-Based Materials, Contribution to ECF 18, September 2010, Dresden, Germany. Freiburg: Aedificatio Publishers, 99–111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.