1,649
Views
78
CrossRef citations to date
0
Altmetric
Review Articles

Synergistic use of peat and charred material in growing media – an option to reduce the pressure on peatlands?

ORCID Icon, , , ORCID Icon, , , , , , , , , & show all
Pages 160-174 | Received 12 May 2016, Accepted 17 Jan 2017, Published online: 28 Jun 2017

References

  • Agegnehu, G.; Bass, A. M.; Nelson, P. N.; Bird, M. I. 2016. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil, Science of the Total Environment 543: 295–306. https://doi.org/10.1016/j.scitotenv.2015.11.054
  • Altland, J. E.; Locke, J. C. 2012. Biochar affects macronutrient leaching from a soilless substrate, HortScience 47: 1136–1140.
  • Bargmann, I.; Rillig, M.; Buss, W.; Kruse, A.; Kuecke, M. 2013. Hydrochar and biochar effects on germination of spring barley, Journal of Agronomy and Crop Science 199: 360–373. https://doi.org/10.1111/jac.12024
  • Baumgarten, A. 2013. European standardization of growing media analysis – a crtical review, Acta Horticulturae 1013: 59–64. https://doi.org/10.17660/ActaHortic.2013.1013.3
  • Bigelow, C. A.; Bowman, D. C.; Cassel, D. K. 2004. Physical properties of three sand size classes amended with inorganic materials or sphagnum peat moss for putting green rootzones, Crop Science 44: 900–907. https://doi.org/10.2135/cropsci2004.9000
  • Bonn, A.; Reed, M. S.; Evans, C. D.; Joosten, H.; Bain, C.; Farmer, J.; Emmer, I.; Couwenberg, J.; Moxey, A.; Artz, R.; Tanneberger, F.; Unger, von M.; Smyth, M.-A.; Birnie, D. 2014. Investing in nature: developing ecosystem service markets for peatland restoration, Ecosystem Services 9: 54–65. https://doi.org/10.1016/j.ecoser.2014.06.011
  • Brewer, J. S.; Baker, D. J.; Nero, A. S.; Patterson, A. L.; Roberts, R. S.; Turner, L. M. 2011. Carnivory in plants as a beneficial trait in wetlands, Aquatic Botany 94: 62–70. https://doi.org/10.1016/j.aquabot.2010.11.005
  • Bullock, A.; Acreman, M. 2003. The role of wetlands in the hydrological cycle, Hydrology and Earth System Sciences Discussions 7(3): 358–389. https://doi.org/10.5194/hess-7-358-2003
  • Busch, D.; Kammann, C.; Gruenhage, L.; Mueller, C. 2012. Simple biotoxicity tests for evaluation of carbonaceous soil additives: establishment and reproducibility of four test procedures, Journal of Environmental Quality 41: 1023–1032. https://doi.org/10.2134/jeq2011.0122
  • Busch, D.; Stark, A.; Kammann, C. I.; Glaser, B. 2013. Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to biochar from pyrolysis, Ecotoxicology and Environmental Safety 97: 59–66. https://doi.org/10.1016/j.ecoenv.2013.07.003
  • Buss, W.; Graham, M. C.; Shepherd, J. G.; Masek, O. 2016. Risks and benefits of marginal biomass-derived biochars for plant growth, Science of the Total Environment 569: 496–506. https://doi.org/10.1016/j.scitotenv.2016.06.129
  • Butler, R. 2009. EU is 2nd largest source of peat emissions after Indonesia, finds global peat survey [online], [cited 12 May 2016]. Available from Internet: https://news.mongabay.com/2009/11/eu-is-2nd-largest-source-of-peat-emissions-after-indonesia-finds-global-peat-survey/
  • Casagrande, D.; Ferguson, A.; Boudreau, J.; Predny, R.; Folden, C. 1985. Organic geochemical investigations in the Okefenokee Swamp, Georgia: the fate of fatty acids, glucosamine, cellulose and lignin, in Compte Rendu, Neuvieme Congres International de Stratigraphie et de Geologie du Carbonifere, 17–26 May 1979, Washington and Champaign-Urbana, 4: 193–204.
  • CBD. 1992. Convention on Biological Diversity 1992. R io de Janeiro, Brazil [online], [cited 5 June 1992]. Available from Interent: http://cil.nus.edu.sg/1992/1992-convention-onbiological-diversity/
  • CR 13456:1999. Soil Improvers and Growing Media – Labelling, Specifications and Product Schedules. CEN, European Committee for Standardisation, Brussels. 50 p.
  • Clarke, D.; Rieley, J. 2010. Strategy for responsible peatland management. International Peat Society.
  • Clymo, R. S.; Hayward, P. M. 1982. The ecology of Sphagnum, in Bryophyte ecology. Springer Netherlands, 229–289.
  • CoConcept. 2008. Socio-economic impact of the peat and growing media industry on horticulture in the EU. M. Altmann (Ed.). Report. i. 119 p.
  • De Tender, C. A.; Debode, J.; Vandecasteele, B.; D’Hose, T.; Cremelie, P.; Haegeman, A.; Ruttink, T.; Dawyndt, P.; Maes, M. 2016. Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar, Applied Soil Ecology 107: 1–12. https://doi.org/10.1016/j.apsoil.2016.05.001
  • Desbiens, M. C.; Bussieres, P.; Caron, J.; Beeson, R.; Haydu, J.; Boudreau, J.; Elrick, D. 2008. Improved water saving in nursery production using Sphagnum peat, Acta Horticulturae 779: 407–413. https://doi.org/10.17660/ActaHortic.2008.779.51
  • Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration of waste.
  • Dorais, M.; Martinez, C.; Diop, M.; Theriault, M.; Menard, C.; Pepin, S. 2016. Assessing the potential of biochar as a growing media component for potted plants, Acta Horticulturae 1137: 19–26. https://doi.org/10.17660/ActaHortic.2016.1137.3
  • Dudová, L.; Hájková, P.; Buchtová, H.; Opravilová, V. 2013. Formation, succession and landscape history of Central-European summit raised bogs: a multiproxy study from the Hrubý Jeseník Mountains, The Holocene 23: 230–242. https://doi.org/10.1177/0959683612455540
  • Dumroese, R. K.; Heiskanen, J.; Englund, K.; Tervahauta, A. 2011. Pelleted biochar: Chemical and physical properties show potential use as a substrate in container nurseries, Biomass & Bioenergy 35(5): 2018–2027. https://doi.org/10.1016/j.biombioe.2011.01.053
  • Dunn, C.; Freeman, C. 2011. Peatlands: our greatest source of carbon credits?, Carbon Management 2(3): 289–301. https://doi.org/10.4155/cmt.11.23
  • Dunst, G. 2015. Kompostierung und Erdenherstellung. Praxisbuch und Anleitung für Hausgarten, Landwirtschaft, Kommune und Profi. Riedlingsdorf: Verleger Sonnenerde – Gerald Dunst Kulturerden GmbH. 260 p.
  • European Biochar Foundation. 2012. European Biochar Certificate – Guidelines for a Sustainable Production of Biochar: Version 6.1 of 19th June 2015 [online]. Arbaz, Switzerland [cited 12 May 2016]. Available from: http://www.european-biochar.org/biochar/media/doc/ebc-guidelines.pdf.
  • Fornes, F.; Belda, R. M.; Lidon, A. 2015. Analysis of two biochars and one hydrochar from different feedstock: focus set on environmental, nutritional and horticultural considerations, Journal of Cleaner Production 86: 40–48. https://doi.org/10.1016/j.jclepro.2014.08.057
  • Foundation Responsibly Produced Peat [online]. 1.12.2014 [cited 12 May 2016]. Available from Internet: http://www.responsiblyproducedpeat.org/certification-system
  • Frenkel, O.; Jaiswal, A.; Elad, Y.; Lewi, B.; Kammann, C.; Graber, E. The effect of biochar on plant diseases: what should we learn while designing biochar substrates?, Journal of Environmental Engineering and Landscape Management (this issue).
  • Fuchsman, C. H. 1980. Peat, industrial chemistry and technology. London: Academic Press.
  • Gaskin, J. W.; Steiner, C.; Harris, K.; Das, K. C.; Bibens, B. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use, Transactions of the American Society of Agricultural and Biological Engineers 51: 2061–2069.
  • Glaser, B.; Wiedner, K.; Seelig, S.; Schmidt, H.-P.; Gerber, H. 2015. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers, Agronomy for Sustainable Development 35: 667–678. https://doi.org/10.1007/s13593-014-0251-4
  • Graber, E. R.; Frenkel, O.; Jaiswal, A. K.; Elad, Y. 2014. How may biochar influence severity of diseases caused by soilborne pathogens?, Carbon Management 5: 169–183. https://doi.org/10.1080/17583004.2014.913360
  • Hale, S. E.; Lehmann, J.; Rutherford, D.; Zimmerman, A. R.; Bachmann, R. T.; Shitumbanuma, V.; O’Toole, A.; Sundqvist, K. L.; Arp, H. P. H.; Cornelissen, G. 2012. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars, Environmental Science & Technology 46: 2830–2838. https://doi.org/10.1021/es203984k
  • Hammer, E. C.; Forstreuter, M.; Rillig, M. C.; Kohler, J. 2015. Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress, Applied Soil Ecology 96: 114–121. https://doi.org/10.1016/j.apsoil.2015.07.014
  • Holden, J. 2005. Peatland hydrology and carbon release: why small-scale process matters, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363: 2891–2913. https://doi.org/10.1098/rsta.2005.1671
  • Immirzi, C. P.; Maltby, E.; Clymo, R. S. 1992. The global status of peatlands and their role in carbon cycling: a report for Friends of the Earth. London, UK: Friends of the Earth. 145 p.
  • IPCC. 2014. The 2013 supplement to the 2006 Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement). Intergovernmental Panel on Climate Change.
  • IUSS Working Group WRB. 2007. World Reference Base for Soil Resources, first update 2007. World Soil Resources Reports 103. FAO, Rome.
  • Jandl, G.; Eckhardt, K. U.; Bargmann, I.; Kuecke, M.; Greef, J. M.; Knicker, H.; Leinweber, P. 2013. Hydrothermal carbonization of biomass residues: mass spectrometric characterization for ecological effects in the soil-plant system, Journal of Environmental Quality 42: 199–207. https://doi.org/10.2134/jeq2012.0155
  • Janzen, H. H. 2004. Carbon cycling in earth systems-a soil science perspective, Agriculture, Ecosystems and Environment 104: 399–417. https://doi.org/10.1016/j.agee.2004.01.040
  • Joosten, H. 2009. The Global Peatland CO2 Picture: peatland status and drainage related emissions in all countries of the world. Wetlands International. Wageningen; Netherlands. 35 p.
  • Joosten, H.; Clarke, D. 2002. Wise use of mires and peatlands. International Mire Conservation Group and International Peat Society. Saarijärvi, Finland. 304 p.
  • Kammann, C.; Borchard, N.; Cayuela, M.; Hagemann, N.; Ippolito, J.; Jeffery, S.; Kern, J.; Rasse, D.; Saarnio, S.; Schmidt, H.-P.; Spokas, K.; Wrage-Mönnig, N. Biochar as a novel tool to reduce the agricultural greenhouse-gas burden – knowns, unknowns and future perspectives, Journal of Environmental Engineering and Landscape Management (this issue).
  • Karhunen, A.; Laihanen, M.; Ranta, T. 2015. Supply security for domestic fuels at Finnish combined heat and power plants, Biomass and Bioenergy 77: 45–52. https://doi.org/10.1016/j.biombioe.2015.03.019
  • Keddy, P. A. 2010. Wetland ecology. Cambridge University Press. https://doi.org/10.1017/CBO9780511778179
  • Khan, S.; Chao, C.; Waqas, M.; Arp, H. P. H.; Zhu, Y.-G. 2013. Sewage sludge biochar influence upon rice (Oryza sativa L.) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil, Environmental Science & Technology 47: 8624–8632. https://doi.org/10.1021/es400554x
  • Kipp, J. A.; Wever, W.; de Kreij, C. 2000. International substrate manual. Doetinchem, The Netherlands: Elsevier International Business Information.
  • Koehler, A.-K.; Sottocornola, M.; Kiely, G. 2011. How strong is the current carbon sequestration of an Atlantic blanket bog?, Global Change Biology 17: 309–319. https://doi.org/10.1111/j.1365-2486.2010.02180.x
  • Koster, E. A.; Favier, T. 2005. Peatlands, past and present, in E. A. Koster (Ed.). The physical geography of Western Europe. Oxford University Press, 161–182.
  • Kuzyakov, Y.; Bogomolova, I.; Glaser, B. 2014. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis, Soil Biology and Biochemistry 70: 229–236. https://doi.org/10.1016/j.soilbio.2013.12.021
  • Lanza, G.; Wirth, S.; Gessler, A.; Kern, J. 2015. Short-term response of soil CO2 respiration to addition of biochars: impact of fermentation post-processing and mineral nitrogen, Pedosphere 25(5): 761–769. https://doi.org/10.1016/S1002-0160(15)30057-6
  • Lawrence, W. J. C.; Newell, J. 1939. Seed and potting compost. London: Allen & Unwin.
  • Lehmann, J.; Joseph, S. 2015. Biochar for environmental management: science, technology and implementation. Oxon, NewYork: Routledge.
  • Libra, J.; Ro, K.; Kammann, C.; Funke, A.; Berge, N.; Neubauer, Y.; Titirici, M.; Fühner, C.; Bens, O.; Kern, J.; Emmerich, K. 2011. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis, Biofuels 2(1): 71–106. https://doi.org/10.4155/bfs.10.81
  • Liu, J.; Schulz, H.; Brandl, S.; Miehtke, H.; Huwe, B.; Glaser, B. 2012. Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions, Journal of Plant Nutrition and Soil Science 175: 698–707. https://doi.org/10.1002/jpln.201100172
  • Maher, M. J.; Prasad, M. 1993. Physical and chemical properties of fractioned peat, Acta Horticulturae 342: 257–264.
  • Maher, M. J.; Prasad, M.; Raviv, M. 2008. Organic soilless media components, in M. Raviv, J. H. Leith (Eds.). Soilless culture. Theory and practice. Amsterdam: Elsevier, 459–504. https://doi.org/10.1016/B978-044452975-6.50013-7
  • Marchán-Sanz, C.; Regueiro, M.; Barros, G. 2014. Panorama Minero [online]. Instituto Geológico y Minero de España (IGME). 366 p. [cited 12 May 2016]. Available from Internet: http://www.igme.es/PanoramaMinero/Panorama%20minero%202014.pdf
  • Menberu, M. W.; Tahvanainen, T.; Marttila, H.; Irannezhad, M.; Ronkanen, A. K.; Penttinen, J.; Klove, B. 2016. Water-tabledependent hydrological changes following peatland forestry drainage and restoration: analysis of restoration success, Water Resources Research 52: 3742–3760. https://doi.org/10.1002/2015WR018578
  • Méndez, A.; Paz-Ferreiro, J.; Gil, E.; Gascó, G. 2015. The effect of paper sludge and biochar addition on brown peat and coir based growing media properties, Scientia Horticulturae 193: 225–230. https://doi.org/10.1016/j.scienta.2015.07.032.
  • Michel, J.-C. 2010. The physical properties of peat: a key factor for modern growing media, Mires and Peat 6: 1–6.
  • Mitsch, W. J.; Gosselink, J. G. 2000. Wetlands. John Wiley & Sons, Inc.
  • Montanarella, L.; Jones, R. J. A.; Hiederer, R. 2006. The distribution of peatland in Europe, Mires and Peat 1: Article 1. International Mire Conservation Group and International Peat Society.
  • Moore, P. D. 1989. The ecology of peat-forming processes: a review, International Journal of Coal Geology 12: 89–103. https://doi.org/10.1016/0166-5162(89)90048-7
  • Mukherjee, S.; Halder, G. 2016. Assessment of fluoride uptake performance of raw biomass and activated biochar of Colocasia esculenta stem: optimization through response surface methodology, Environmental Progress & Sustainable Energy 35: 1305–1316. https://doi.org/10.1002/ep.12346
  • O’Toole, A.; Andersson, D.; Gerlach, A.; Glaser, B.; Kammann, C.; Kern, J.; Kuoppamäki, K.; Mumme, J.; Schmidt, H.-P.; Schulze, M.; Srocke, F.; Stenrod, M.; Stenström J. 2016. Current and future applications for biochar, in S. Shackley, G. Ruysschaert, K. Zwart, B. Glaser (Eds.). Biochar in European soils and agriculture. Science and Practice. Oxon: Routledge, 253–280.
  • Oleszczuk, R.; Szajdak, L.; Maryganova, V. 2008. Impacts of agricultural utilization of peat-soil on the greenhouse gas balance, Plant Soil 315: 3–17.
  • Parish, F.; Sirin, A.; Charman, D.; Joosten, H.; Minaeva, T.; Silvius, M. 2008. Assessment of peatlands, biodiversity and climate change. Global Environment Centre, Kuala Lumpur and Wetlands International. Wageningen. 179 p.
  • Prasad, M.; Carlile, W. R.; Maher, M. J. 2008. Research leads to building of 100,000 tonne compost facility for peat reduction, Paper 211, in 6th International Conference Orbit 2008, 13–15 October 2008, Wageningen, The Netherlands.
  • Prasad, M.; Maher, M. J. 2013. Colour of peat as an indicator of chemical, biological and physical properties of peats, Acta Horticulturae 1013: 89–94. https://doi.org/10.17660/ActaHortic.2013.1013.8
  • Prasad, M. Unpublished data.
  • Prendergast-Miller, M.; Duvall, M.; Sohi, S. 2014. Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability, European Journal of Soil Science 65: 173–185. https://doi.org/10.1111/ejss.12079
  • Preston, M. D.; Basiliko, N. 2016. Carbon mineralization in peatlands: does the soil microbial community composition matter?, Geomicrobiology Journal 33: 151–162. https://doi.org/10.1080/01490451.2014.999293
  • Ramchunder, S. J.; Brown, L. E.; Holden, J. 2012. Catchmentscale peatland restoration benefits stream ecosystem biodiversity, Journal of Applied Ecology 1: 182–191. https://doi.org/10.1111/j.1365-2664.2011.02075.x
  • Reinikainen, O.; Korpi, J.; Tahvonen, R.; Näkkilä, J.; Silvan, N.; Silvan, K. 2012. Harvesting of Sphagnum biomass and its use as a growing medium constituent, in The 14th International Peat Congress, Peatlands in Balance, 3–8 June 2012, Stockholm, Sweden.
  • Renou-Wilson, F.; Farrell, C. A. 2009. Peatland vulnerability to energy-related developments from climate change policy in Ireland: the case of wind farms, Mires and Peat 4: Article 08 [online]. International Mire Conservation Group and International Peat Society [cited 16 May 2009]. Available from Interent: http://www.mires-and-peat.net/
  • Rydin, H.; Jeglum, J. K. 2006. The biology of peatlands. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198528722.001.0001
  • Schimmelpfennig, S.; Glaser, B. 2012. One step forward toward characterization: some important material properties to distinguish biochars, Journal of Environmental Quality 41: 1001–1013. https://doi.org/10.2134/jeq2011.0146
  • Schmilewski, G. 2008. The role of peat in assuring the quality of growing media, Mires and Peat 3: Article 02. International Mire Conservation Group and International Peat Society.
  • Schulze, M.; Mumme, J.; Funke, A.; Kern, J. 2016. Effects of selected process conditions on the stability of hydrochar in low-carbon sandy soil, Geoderma 257: 137–145. https://doi.org/10.1016/j.geoderma.2015.12.018
  • Schumann, M.; Joosten, H. 2008. Global peatland restoration manual. Institute of Botany and Landscape Ecology, Greifswald University, Germany. 68 p.
  • Shackley, S.; Clare, A.; Joseph, S., McCarl, B. A.; Schmidt, H.-P. 2015. Economic evaluation of biochar systems: current evidence and challenges, in J. Lehmann, S. Joseph (Eds.). Biochar for Environmental management: science, technology and implementation. London, New York: Routledge, 813–852.
  • Shackley, S.; Ruysschaert, G.; Zwart, K.; Glaser, B. 2016. Biochar in European soils and agriculture. Science and practice. Oxon: Routledge.
  • Silvan, N.; Silvan, K.; Näkkilä, J.; Tahvonen, R.; Reinikainen, O. 2012. Renewability, use and properties of Sphagnum biomass for growing media purposes, in T. Magnusson (Ed.). Book of abstracts. The 14th International Peat Congress, Peatlands in Balance, 3–8 June 2012, Stockholm, Sweden, 175–176.
  • Sohi, S.; Gaunt, J.; Atwood, J. 2013. Biochar in growing media: a sustainability and feasibility assessment. UK Biochar Research Centre. 84 p.
  • Steiner, C.; Harttung, T. 2014. Biochar as a growing media additive and peat substitute, Solid Earth 5: 995–999. https://doi.org/10.5194/se-5-995-2014
  • Steiner, C.; Sanchez-Monedero, M. A.; Kammann, C. 2015. Biochar as an additive to compost and growing media, in J. Lehmann, S. Joseph (Eds.). Biochar for environmental management: science, technology and implementation. London, New York: Routledge, 717–735.
  • Steiner, C.; Teixeira, W. G.; Woods, W. I.; Zech, W. 2009. Indigenous knowledge about Terra Preta Formation, in W. I. Woods, W. Teixeira, J. Lehmann, C. Steiner, A. M. G. A. WinklerPrins, L. Ribellato (Eds.). Amazonian dark earths: Wim Sombroek’s vision. Springer.
  • Strack, M. 2008. Peatlands and climate change. International Peat Society A5, Jyväskylä, Finland. 223 p.
  • Tahvonen, R.; Näkkila, J.; Silvan, N.; Reinikainen, O. 2015. Production and use of sphagnum biomass as a plant substrate in greenhouse, in Book of abstracts. SusGro 2015, International Symposium on Growing Media, Composting and Substrate Analysis, 7–9 September 2015, Vienna, Austria, p. 45.
  • Tanneberger, F.; Wichtmann, W. 2011. Carbon credits from peatland rewetting Climate – biodiversity – land use: science, policy, implementation and recommendations of a pilot project in Belarus. Stuttgart, Germany: Schweizerbart Science Publishers. 223 p.
  • Tian, Y.; Sun, X.; Li, S.; Wang, H.; Wang, L.; Cao, J.; Zhang, L. 2012. Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata, Scientia Horticulturae 143: 15–18. https://doi.org/10.1016/j.scienta.2012.05.018
  • UBA. 2016. Chancen und Risiken des Einsatzes von Biokohle und anderer „veränderter” Biomasse als Bodenhilfsstoffe oder für die C-Sequestrierung in Böden. Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit. Texte 04/2016, Dessau-Roßlau. 254 p.
  • Van der Gaag, D. J.; van Noort, F. R.; Stapel-Cuijpers, L. H. M.; de Kreij, C; Termorshuizen, A. J.; van Rijn, E.; Zmora-Nahum, S.; Chen, Y. 2007. The use of green waste compost in peat-based potting mixtures: fertilization and suppressiveness against soilborne diseases, Scientia Horticulturae 114(4): 289–297. https://doi.org/10.1016/j.scienta.2007.06.018
  • Vaughn, S. F.; Kenar, J. A.; Thompson, A. R.; Peterson, S. C. 2013. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates, Industrial crops and products 51: 437–443. https://doi.org/10.1016/j.indcrop.2013.10.010
  • Veeken, A. H. M.; Blok, W. J.; Curci, F.; Coenen, G. C. M.; Termorshuizen, A. J.; Hamelers, H. V. M. 2005. Improving quality of composted biowaste to enhance disease suppressiveness of compost-amended, peat-based potting mixes, Soil Biology & Biochemistry 37(11): 2131–2140. https://doi.org/10.1016/j.soilbio.2005.03.018
  • Verry, E. S.; Timmons, D. R. 1982. Nutrient flow through peatland, Ecology 63: 1456–1466. https://doi.org/10.2307/1938872
  • Wichtmann, W.; Schäfer, A. 2007. Alternative management options for degraded fens – Utilisation of biomass from rewetted peatlands, in T. Okruszko, E. Maltby, J. Szatylowicz, D. Swiatek, W. Kotowski. (Eds.). Wetlands: monitoring, modeling and management. London: Taylor & Francis Group, 273–279.
  • World Energy Council. 2013. World Energy Resources. Chapter 6.