62
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

A GIS-based multi-criteria evaluation framework for uncertainty reduction in earthquake disaster management using granular computing

, , &
Pages 58-68 | Received 10 Feb 2016, Accepted 03 Jun 2016, Published online: 22 Jun 2016

References

  • Abrahamson, N. A.; Bommer, J. J. 2005. Probability and uncertainty in seismic hazard analysis. Earthquake spectra 21: 603–607. doi: 10.1193/1.1899158
  • Ai, B.; Ma, S.; Wang, S. 2015. Land-use zoning in fast developing coastal area with ACO model for scenario decisionmaking, Geospatial Information Science 18: 43–55. doi: 10.1080/10095020.2015.1017910
  • Al-Momani, N. M.; Harrald, J. R. 2003. Sensitivity of earthquake loss estimation model: how useful are the predictions, International Journal of Risk Assessment and Management 4: 1–19. doi: 10.1504/IJRAM.2003.003433
  • Asadzadeh, A.; Kötter, T.; Zebardast, E. 2015. An augmented approach for measurement of disaster resilience using connective factor analysis and analytic network process (F’ANP) model, International Journal of Disaster Risk Reduction 14: 504–518. doi: 10.1016/j.ijdrr.2015.10.002
  • Baker, J. W.; Cornell, C. A. 2008. Uncertainty propagation in probabilistic seismic loss estimation, Structural Safety 30: 236–252. doi: 10.1016/j.strusafe.2006.11.003
  • Beynon, M.; Cosker, D.; Marshall, D. 2001. An expert system for multi-criteria decision making using Dempster Shafer theory, Expert Systems with Applications 20: 357–367. doi: 10.1016/S0957-4174(01)00020-3
  • Chakraborty, D.; Shankar, B. U.; Pal, S. K. 2013. Granulation, rough entropy and spatiotemporal moving object detection, Applied Soft Computing 13: 4001–4009. doi: 10.1016/j.asoc.2012.09.003
  • Debnath, R. 2013. An assessment of spatio-temporal pattern of urban earthquake vulnerability using GIS: a study on Dhaka City, Annals of GIS 19: 63–78. doi: 10.1080/19475683.2013.782468
  • Delavar, M.; Moradi, M.; Moshiri, B. 2015. Earthquake vulnerability assessment for hospital buildings using a GISBased Group Multi Criteria Decision Making Approach: a case study of Tehran, Iran. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences.
  • Emmi, P. C.; Horton, C. A. 1995. A Monte Carlo simulation of error propagation in a GIS-based assessment of seismic risk, International Journal of Geographical Information Systems 9: 447–461. doi: 10.1080/02693799508902049
  • Erden, T.; Karaman, H. 2012. Analysis of earthquake parameters to generate hazard maps by integrating AHP and GIS for Küçükçekmece region, Natural Hazards and Earth System Science 12: 475–483. doi: 10.5194/nhess-12-475-2012
  • Griffith, D. A. 2014. Reflections on the current state of spatial statistics education in the United States: 2014. Geospatial Information Science 17: 229–235.
  • Harmanec, D.; Klir, G. J. 1994. Measuring total uncertainty in Dempster-Shafer theory: A novel approach, International Journal of General System 22: 405–419. doi: 10.1080/03081079408935225
  • Hashemi, M.; Alesheikh, A. 2012. Development and implementation of a GIS-based tool for spatial modeling of seismic vulnerability of Tehran, Natural Hazards and Earth System Science 12: 3659–3670. doi: 10.5194/nhess-12-3659-2012
  • Hońko, P. 2013. Association discovery from relational data via granular computing, Information Sciences 234: 136–149. doi: 10.1016/j.ins.2013.01.004
  • Huang, J.; Zhou, Q.; Wang, F. 2015. Mapping the landslide susceptibility in Lantau Island, Hong Kong, by frequency ratio and logistic regression model, Annals of GIS 21: 191–208.
  • Kim, H.-S.; Chung, C.-K. 2016. Integrated system for sitespecific earthquake hazard assessment with geotechnical spatial grid information based on GIS, Natural Hazards 82: 981–1007. doi: 10.1007/s11069-016-2230-3
  • Lin, T. Y. 1998. Granular computing on binary relations I: data mining and neighborhood systems, Rough sets in knowledge discovery 1: 107–121.
  • Lin, T. Y. 2012. Granular computing: practices, theories, and future directions. Computational complexity. Springer.
  • Lin, T. Y.; Yao, Y. Y.; Zadeh, L. A. 2013. Data mining, rough sets and granular computing. Physica.
  • Malczewski, J.; Liu, X. 2014. Local ordered weighted averaging in GIS-based multicriteria analysis, Annals of GIS 20: 117–129. doi: 10.1080/19475683.2014.904439
  • Martins, V. N.; E Silva, D. S.; Cabral, P. 2012. Social vulnerability assessment to seismic risk using multicriteria analysis: the case study of Vila Franca do Campo (Sao Miguel Island, Azores, Portugal), Natural hazards 62: 385–404. doi: 10.1007/s11069-012-0084-x
  • Moradi, M.; Delavar, M.; Moradi, A. 2015a. A GIS-based model for post-earthquake personalized route planning using the integration of evolutionary algorithm and OWA, in The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 40: 509.
  • Moradi, M.; Delavar, M.; Moshiri, B. 2013. Sensitivity analysis of ordered weighted averaging operator in earthquake vulnerability assessment, in ISPRSInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 1: 277–282.
  • Moradi, M.; Delavar, M.; Moshiri, B.; Khamespanah, F. 2014. A novel approach to support majority voting in spatial group MCDM using density induced OWA operator for seismic vulnerability assessment, in The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 40: 209.
  • Moradi, M.; Delavar, M. R.; Moshiri, B. 2015b. A GIS-based multi-criteria decision-making approach for seismic vulnerability assessment using quantifier-guided OWA operator: a case study of Tehran, Iran, Annals of GIS 21: 209–222. doi: 10.1080/19475683.2014.966858
  • Nguyen, S. H.; Skowron, A.; Stepaniuk, J. 2001. Granular computing: A rough set approach, Computational Intelligence 17: 514–544. doi: 10.1111/0824-7935.00161
  • Panahi, M.; Rezaie, F.; Meshkani, S. 2013. Seismic vulnerability assessment of school buildings in Tehran city based on AHP and GIS, Natural Hazards and Earth System Sciences Discussions 1: 4511–4538. doi: 10.5194/nhessd-1-4511-2013
  • Panahi, M.; Rezaie, F.; Meshkani, S. 2014. Seismic vulnerability assessment of school buildings in Tehran city based on AHP and GIS, Natural Hazards and Earth System Sciences 14: 969–979. doi: 10.5194/nhess-14-969-2014
  • Pedrycz, A.; Hirota, K.; Pedrycz, W.; Dong, F. 2012. Granular representation and granular computing with fuzzy sets, Fuzzy Sets and Systems 203: 17–32. doi: 10.1016/j.fss.2012.03.009
  • Pedrycz, W. 2014. Allocation of information granularity in optimization and decision-making models: towards building the foundations of granular computing, European Journal of Operational Research 232: 137–145. doi: 10.1016/j.ejor.2012.03.038
  • Pedrycz, W.; Bassis, S.; Malchiodi, D. 2008. The puzzle of granular computing. Vol. 138. Springer.
  • Rajarathnam, S.; Santhakumar, A. 2015. Assessment of seismic building vulnerability based on rapid visual screening technique aided by aerial photographs on a GIS platform, Natural Hazards 78: 779–802. doi: 10.1007/s11069-014-1382-2
  • Rashed, T.; Weeks, J. 2003. Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas, International Journal of Geographical Information Science 17: 547–576. doi: 10.1080/1365881031000114071
  • Rezaie, F.; Panahi, M. 2015. GIS modeling of seismic vulnerability of residential fabrics considering geotechnical, structural, social and physical distance indicators in Tehran using multi-criteria decision-making techniques, Natural Hazards and Earth System Science 15: 461–474. doi: 10.5194/nhess-15-461-2015
  • Sheikhian, H.; Delavar, M.; Stein, A. 2015. Integrated estimation of seismic physical vulnerability of Tehran using rule based granular computing, in The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 40: 187.
  • Skowron, A.; Stepaniuk, J. 2001. Information granules: towards foundations of granular computing, International Journal of Intelligent Systems 16: 57–85. doi: 10.1002/1098-111X(200101)16:1<57::AID-INT6>3.0.CO;2-Y
  • Tyagunov, S.; Pittore, M.; Wieland, M.; Parolai, S.; Bindi, D.; Fleming, K.; Zschau, J. 2014. Uncertainty and sensitivity analyses in seismic risk assessments on the example of Cologne, Germany, Natural Hazards and Earth System Science 14: 1625–1640. doi: 10.5194/nhess-14-1625-2014
  • Yager, R. R. 1987. On the Dempster-Shafer framework and new combination rules, Information sciences 41: 93–137. doi: 10.1016/0020-0255(87)90007-7
  • Yager, R. R. 1992. Decision making under Dempster-Shafer uncertainties, International Journal of General System 20: 233–245. doi: 10.1080/03081079208945033
  • Yao, J.; Yao, Y. 2002. Induction of classification rules by granular computing. Rough sets and current trends in computing. Springer, 331–338.
  • Zhang, X.; Miao, D. 2013. Two basic double-quantitative rough set models of precision and grade and their investigation using granular computing, International Journal of Approximate Reasoning 54: 1130–1148. doi: 10.1016/j.ijar.2013.02.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.