703
Views
77
CrossRef citations to date
0
Altmetric
Review Articles

Unusual fungal niches

, , , &
Pages 1161-1174 | Received 31 Mar 2011, Accepted 20 Apr 2011, Published online: 20 Jan 2017

LITERATURE CITED

  • AbyzovSS. 1993. Microorganisms in the Antarctic Ice. In: FriedmannEI, ed. Antarct Microbiol. New York: Wiley-Liss. p 265–285.
  • AdamsBJBardgettRDAyresEWallDHAislabieJBamforthSBargagliRCaryCCavaciniPConnellLConveyPFellJWFratiFHoggIDNewshamKKO’DonnellARussellNSeppeltRDStevensMI. 2006. Diversity and distribution of Victoria land biota. Soil Biol Biochem 55:3003–3018, 10.1016/j.soilbio.2006.04.030
  • AndersonICCairneyJWG. 2004. Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779, 10.1111/j.1462-2920.2004.00675.x
  • AtlasRMdi MennaMECameronRE. 1978. Ecological investigations of yeasts in Antarctic soils. Antarct Res Ser 30:27–34.
  • BabjevaIReshetovaI. 1998. Yeast resources in natural habitats at polar circle latitude. Food Technol Biotechnol 36:1–5.
  • BakerBJLutzMADawsonSCBondPLBanfieldJF. 2004. Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70:6264–6271, 10.1128/AEM.70.10.6264-6271.2004
  • BaublisAWhartonRAVolzPA. 1991. Diversity of microfungi in an Antarctic dry valley. J Basic Microbiol 31:3–12, 10.1002/jobm.3620310102
  • BauchopT. 1979. Rumen anaerobic fungi of cattle and sheep. Appl Environ Microbiol 38:148–158.
  • BaumgartnerLKReidRPDuprazCDechoAWBuckleyDHSpearJRPrzekopKMVisscherPT. 2006. Sulfate-reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment Geol 185:131–145, 10.1016/j.sedgeo.2005.12.008
  • BentisCJKaufmanLGolubicS. 2000. Endolithic fungi in reef-building corals (order Scleractinia) are common, cosmopolitan and potentially pathogenic. Biol Bull 198:254–260, 10.2307/1542528
  • BrandaETurchettiBDiolaiutiGPecciMSmiragliaCBuzziniP. 2010. Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy). FEMS Microbiol Ecol 59:331–341.
  • BridgePDNewshamKK. 2009. Soil fungal community composition at Mars Oasis, a southern maritime Antarctic site, assessed by PCR amplification and cloning. Fungal Ecol 2:66–74, 10.1016/j.funeco.2008.10.008
  • BridgePDSpoonerBM. 2001. Soil fungi: diversity and detection. Plant Soil 232:147–154, 10.1023/A:1010346305799
  • BroadyPDGivenDGreenfieldLThompsonK. 1987. The biota and environment of fumaroles on Mt Melbourne, northern Victoria land. Polar Biol 7: 97–113, 10.1007/BF00570447
  • BunnRAZabinskiCA. 2003. Arbuscular mycorrhizae in thermal-influenced soils in Yellowstone National Park. West N Am Nat 63:409–415.
  • BurkinsMBVirginiaRAChamberlainCPWallDH. 2000. Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 81:2377–2391, 10.1890/0012-9658(2000)081[2377:OADOSO]2.0.CO;2
  • BurneRVMooreLS. 1987. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2:241–254, 10.2307/3514674
  • ButinarLZalarPFrisvadJCGunde-CimermanN. 2005a. The genus Eurotium—members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol Ecol 51:155–166, 10.1016/j.femsec.2004.08.002
  • ButinarLSantosSSpencer-MartinsIOrenAGunde-CimermanN. 2005b. Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244: 229–234, 10.1016/j.femsle.2005.01.043
  • ButinarLSonjakSZalarPPlemenitašAGunde-CimermanN. 2005c. Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 1: 73–79, 10.1515/BOT.2005.007
  • ButinarLSpencer-MartinsIGunde-CimermanN. 2007. Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. Antonie Van Leeuwenhoek 91:277–289, 10.1007/s10482-006-9117-3
  • ButinarLStrmoleTGunde-CimermanN. 2011. Relative incidence of ascomycetous yeasts in Arctic coastal environments. Microb Ecol 10.1007/s00248-010-9794-3.
  • CameronREMorelliFA. 1974. Viable microorganisms from Antarctic Ross Island and Taylor Valley Drill cores. Antarct J US 9:113–115.
  • CantrellSACasillasLMolinaM. 2006. Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110:962–970, 10.1016/j.mycres.2006.06.005
  • CantrellSABáez-FélixC. 2010. Fungal molecular diversity of a Puerto Rican subtropical hypersaline microbial mat. Fungal Ecol 3:402–405, 10.1016/j.funeco.2010.04.001
  • ChristnerBC. 2002. Incorporation of DNA and protein precursors into macromolecules by bacteria at −15 C. Appl Environ Microbiol 68:6435–6438, 10.1128/AEM.68.12.6435-6438.2002
  • ChristnerBCMosley-ThompsonEThompsonLGZagorodnovVSandmanKReeveJN. 2000. Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485, 10.1006/icar.1999.6288
  • ConnellLBRedmanRCraigSDRodríguezR. 2006. Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biol Biochem 38:3083–3094, 10.1016/j.soilbio.2006.02.016
  • ConnellLBRedmanRCraigSDScorzettiGIszardMRodriguezR. 2008. Diversity of soil yeasts isolated from south Victoria land. Antarct Microb Ecol 56:448–459, 10.1007/s00248-008-9363-1
  • ConnellLBRedmanRRodriguezRBarrettAIszardMFonsecaA. 2010. Dioszegia antarctica sp. nov. and Dioszegia cryoxerica sp nov psychrophilic basidiomycetous yeasts from polar desert soils. IJSEM 60:1466–1472.
  • CrippsCLHorakE. 2008. Checklist and ecology of the Agaricales, Russulales and Boletales in the alpine zone of the Rocky Mountains (Colorado, Montana, Wyoming) at 3000–4000 m a.s.l. Sommerfeltia 31:101–121.
  • D’EliaTVeerapaneniRTheraisnathanVRogersSO. 2009. Isolation of fungi from Lake Vostok accretion ice. Mycologia 101:751–763, 10.3852/08-184
  • de GarcíaVBrizzioSLibkindDBuzziniPvan BroockM. 2007. Biodiversity of cold-adapted yeasts from glacial melt-water rivers in Patagonia, Argentina. FEMS Microbiol Ecol 59:331–341, 10.1111/j.1574-6941.2006.00239.x
  • de HoogGSZalarPGerrits van den EndeBGunde-CimermanN. 2005. Relation of halotolerance to humanpathogenicity in the fungal tree of life: an overview of ecology and evolution under stress. In: Gunde-CimermanNOrenAPlemenitašA, eds. Adaptation to life at high salt concentrations in Archaea, Bacteria and Eukarya. Dordrecht, the Netherlands: Springer COLE. p 453–470.
  • de WitRDyerPGenilloudOGoetlichEHodgsonDde HoogSJonesBLaybourn-ParryJMarinelliFStackebrandtESwingsJTindallBJVyvermanWWilmotteA. 2003. Antarctic lakes—‘hot spots’ for microbial diversity and biotecnological screening, In: 1st FEMS Congress, 29 Jun–Jul 3. Ljubljana, Slovenia: Abstract. p 228.
  • DightonJ. 2003. Fungi in Ecosystem Processes. Mycology Series 17. New York: Marcel Dekker. 432 p.
  • DmitrievVVGilichinskyDAFaizutdinovaRNShershunovINGolubevWIDudaVI. 1997. Occurrence of viable yeasts in 3-million-year-old permafrost in Siberia. Mikrobiologiya 66:655–660.
  • DoranPTWhartonRAJrLyonsWB. 1994. Paleolimnology of the McMurdo dry valleys, Antarctica. J Paleolimnol 10:85–114, 10.1007/BF00682507
  • Dornelo-SilvaDDianeseJC. 2004. New hyphomycete genera on Qualea species from the Brazilian Cerrado. Mycologia 96:879–884, 10.2307/3762120
  • DuarteERResendeCPRosaCAHamdanJS. 2001. Prevalence of yeasts and mycelial fungi in bovine parasitic otitis in the State of Minas Gervais, Brazil. J Vet Med B, 631–635, 10.1046/j.1439-0450.2001.00474.x
  • DuprazCReidRPBraissantODechoAWNormanRSVisscherPT. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Sci Rev 96:141–162, 10.1016/j.earscirev.2008.10.005
  • DuprazCVisscherPT. 2005. Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438, 10.1016/j.tim.2005.07.008
  • DuprazCVisscherPTBaumgartnerLKReidRP. 2004. Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51:745–765, 10.1111/j.1365-3091.2004.00649.x
  • EdgcombVPKyselaDTTeskeAde Vera GómezASoginML. 2002. Benthic eukaryotic diversity in the Guaymas basin hydrothermal vent environment. Proc Natl Acad Sci USA 99:7658–7662, 10.1073/pnas.062186399
  • EkströmGNettlesMAbersGA. 2003. Glacial earthquakes. Science 302:622–624, 10.1126/science.1088057
  • EllisDH. 1980. Thermophilic fungi isolated from heated aquatic habitat. Mycologia 72:1030–1033, 10.2307/3759743
  • FahnestockM. 2003. Geophysics: glacial flow goes seismic. Science 302:578–579, 10.1126/science.1091766
  • FeazelLMSpearJRBergerABKirk HarrisJFrankDNLeyREPaceNR. 2008. Eucaryotic diversity in a hypersaline microbial mat. Appl Environ Microbiol 74:329–332, 10.1128/AEM.01448-07
  • FellJWScorzettiGConnellLCraigS. 2006. Biodiversity of micro-eukaryotes in Antarctic dry valley soils with < 5% soil moisture. Soil Biol Biochem 38:3107–3115, 10.1016/j.soilbio.2006.01.014
  • FiererN. 2008. Microbial biogeography: patterns in microbial diversity across space and time. In: ZenglerK, ed. Accessing uncultivated microorganisms: from the environment to organisms and genomes and back. Washington, DC: ASM Press. p 95–115.
  • FlournoyDJMullisJBMcNealRJ. 2000. Isolation of fungi from rose bush thorns. J Ok State Med Assoc 93:271–274.
  • FoghtJAislabieJTurnerSBrownCERyburnJSaulDJLawsonW. 2004. Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers. Microb Ecol 47:329–340, 10.1007/s00248-003-1036-5
  • FreemanKRMartinAPKarkiDLynchRCMitterMSMeyerAFLongcoreJESimmonsDRSchmidtSK. 2009. Evidence that chytrids dominate fungal communities in high-elevation soils. Proc Natl Acad Sci USA 106:18315–18320, 10.1073/pnas.0907303106
  • FreckmanDWVirginiaRA. 1998. Soil biodiversity and community structure in the McMurdo dry valleys, Antarctica. In: PriscuJC, ed., Ecosystems dynamics in a polar desert: the McMurdo dry valleys, Antarctica. Antarct Res Ser 72:323–335.
  • FriedmannEIMcKayCPNienowJ. 1987. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: continuous nanoclimate data. Polar Biol 7: 273–287, 10.1007/BF00443945
  • GolubicSRadtkeGle Campion-AlsumardT. 2005. Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235, 10.1016/j.tim.2005.03.007
  • GostinčarCGrubeMde HoogGSZalarPGunde-CimermanN. 2009. Extremotolerance in fungi—evolution on the edge. FEMS Microbiol Ecol 71:2–11, 10.1111/j.1574-6941.2009.00794.x
  • Gunde-CimermanNFrisvadJCZalarPPlemenitašA. 2005. Halotolerant and halophilic fungi. In: DeshmukhSKRaiMK, eds. Biodiversity of Fungi—their role in human life. New Delhi: Oxford & IBH Publishing Co. p 69–128.
  • Gunde-CimermanNSonjakSZalarPFrisvadJCDiderichsenBPlemenitašA. 2003. Extremophilic fungi in Arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278.
  • Gunde-CimermanNZalarPde HoogSPlemenitašA. 2000. Hypersaline waters in salterns: natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240.
  • HeathIB. 1988. Gut fungi. Trends Ecol Evol 3:167–171, 10.1016/0169-5347(88)90034-1
  • HockingAD. 1993. Responses in xerophilic fungi to changes in water activity. In: JenningsDH, ed. Stress tolerance of Fungi. New York: Marcel Dekker Inc. p 233–243.
  • HöllerUWrightADMatthéeGFKonigGMDraegerSAustHJSchulzB. 2000. Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365, 10.1017/S0953756200003117
  • HuhtinenSLaukkaTDöbbelerPStenroosS. 2010. Six novelties to European bryosymbiotic discomycetes. Nova Hedwigia 90:413–431, 10.1127/0029-5035/2010/0090-0413
  • JonesBRenautRWRosenMR. 2000. Stromatolites forming in acidic hot-spring waters, North Island, New Zealand. Palaios 15:450–475.
  • JonesGEB. 1976. Recent advances in aquatic mycology. Surrey, UK: The Gresham Press. 749 p.
  • KauserudHMathiesenCOhlsonM. 2008. High diversity of fungi associated with living parts of boreal forest bryophytes. Botany 86:1326–1333, 10.1139/B08-102
  • KrissAEMitskevichINRozanovaEPOsnitskaiaLK. 1976. Microbiological studies of the Wanda Lake (Antarctica). Mikrobiologia 45:1075–1081.
  • LawleyBRipleySBridgePConveyP. 2004. Molecular analysis of geographical patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microbiol 70:5963–5972, 10.1128/AEM.70.10.5963-5972.2004
  • LeyREKirk HarrisJWilcoxJSpearJRMillerSRBeboutBMMarescaJABryantDASoginMLPaceNR. 2006. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695, 10.1128/AEM.72.5.3685-3695.2006
  • LibkindDBrizzioSvan BroockM. 2004. Rhodotorula mucilaginosa, a carotenoid producing yeast strain from a Patagonian high-altitude lake. Folia Microbiol 49:19–25, 10.1007/BF02931640
  • López-GarcíaPRodríguez-ValeraFPedrós-AlióCMoreiraD. 2001. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607, 10.1038/35054537
  • MaLRogersSOCatranisCMStarmerWT. 2000. Detection and characterization of ancient fungi entrapped in glacial ice. Mycologia 92:286–295, 10.2307/3761562
  • MaierRMPepperILGerbaCP. 2009. Environmental microbiology. 2nd ed. Boston: Academic Press. 624 p.
  • MargesinRZackeGSchinnerF. 2002. Characterization of heterotrophic microorganisms in Alpine glacier cryoconite. Arct, Antarct Alp Res 34:88–93, 10.2307/1552512
  • McKnightDMNiyogiDKAlgerASBobbliesAConovitzPATateCM. 1999. Dry valley streams in Antarctica: ecosystems waiting for water. BioScience 49:985–995, 10.2307/1313732
  • MoorheadDHPriscuJC. 1998. The McMurdo dry valley ecosystem: organization, controls and linkages. In: PriscuJC, ed., Ecosystems dynamics in a polar desert: the McMurdo dry valleys, Antarctica. Antarct Res Ser 72:351–360.
  • NorkransB. 1966. Studies on marine occurring yeasts: growth related to pH, NaCl concentration and temperature. Arch Microbiol 54:374–392.
  • NortholtMDFrisvadJCSamsonRA. 1995. Occurrence of foodborne fungi and factors for growth. In: SamsonRAHoekstraESFrisvadJCFiltenborgO, eds. Introduction to foodborne fungi. Delft, the Netherlands: CBS. p 243–250.
  • OnofriSSelbmannLZucconiLPaganoS. 2004. Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237, 10.1016/j.pss.2003.08.019
  • OrenA. 2002. Halophilic microorganisms and their environments. Boston: Kluwer Academic Publishers. COLE Series 5. 600 p.
  • OrpinCG. 1984. The role of ciliate protozoa and fungi in the rumen digestion of plant cell walls. Anim Feed Sci Technol 10:121–143, 10.1016/0377-8401(84) 90003-8
  • PagnoccaFCRodriguesANagamotoNSBacciMJr. 2008. Yeasts and filamentous fungi carried by gynes of leaf cutting ants. Antonie van Leeuwenhoek 94:517–526, 10.1007/s10482-008-9268-5
  • PearceDABridgePDHughesKASattlerBPsennerRRussellNJ. 2009. Microorganisms in the atmosphere over Antarctica. FEMS Microbiol Ecol 69:143–157, 10.1111/j.1574-6941.2009.00706.x
  • PennisiE. 2003. Microbiology. Neither cold nor snow stops tundra fungi. Science 301:1307.
  • Pereira-CarvalhoRCSepúlveda-ChaveraGArmandoEASInácioCADianeseJC. 2009. An overlooked source of fungal diversity: novel hyphomycete genera on trichomes of Cerrado plants. Mycol Res 113:261–274, 10.1016/j.mycres.2008.11.005
  • PittJIHockingAD. 1997. Fungi and Food Spoilage. 2nd ed. London: Blackie Academic & Professional. 548 p.
  • PlemenitašAVaupotičTLenassiMKogejTGunde-CimermanN. 2008. Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Stud Mycol 61:67–75, 10.3114/sim.2008.61.06
  • PricePB. 2000. A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci USA 97:1247–1251, 10.1073/pnas.97.3.1247
  • PristaCLoureiro-DiasMCMontielVGarcíaRRamosJ. 2005. Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Res 5:693–701, 10.1016/j.femsyr.2004.12.009
  • RaghukumarCRaghukumarS. 1998. Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquat Microbial Ecol 15:153–163, 10.3354/ame015153
  • RedmanRSLitvintsevaASheehanKBHensonJMRodriguezRJ. 1999. Fungi from geothermal soils in Yellowstone National Park. Appl Environ Microbiol 65: 5193–5197.
  • RenkerCAlpheiJBuscotF. 2003. Soil nematodes associated with the mammal pathogenic fungal genus Malassezia (Basidiomycota: Ustilaginomycetes) in central European forests. Biol Fertile Soils 37:70–72.
  • RivkinaENFriedmannEIMcKayCPGilichinskyDA. 2000. Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233, 10.1128/AEM.66.8.3230-3233.2000
  • RivkinaENLaurinavichiusKMcGrathJTiedjeJShcherbakovaVGilichinskyD. 2004. Microbial life in permafrost. space life sciences: search for signatures of life and space flight. Environmental Effects on the Nervous System 33:1215–1221.
  • RohdeRAPricePB. 2007. Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals. PNAS 104:16592–16597, 10.1073/pnas.0708183104
  • RuibalCGueidanCSelbmannLGorbushinaAACrousPWGroenewaldJZMuggiaLGrubeMIsolaDSchochCLStaleyJTLutzoniFde HoogGS. 2009. Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Stud Mycol 64:123–133, 10.3114/sim.2009.64.06
  • SamsonRAHoekstraESFrisvadJCFiltenborgO. 2002. Introduction to food- and airborne fungi. Utrecht, the Netherlands: Centraalbureau voor Schimmelcultures. 389 p.
  • SchadtCWMartinAPLipsonDASchmidSK. 2003. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361, 10.1126/science.1086940
  • SerranoR. 1996. Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165:1–52, 10.1016/S0074-7696(08)62219-6
  • SkidmoreMLFoghtJMSharpMJ. 2000. Microbial life beneath a high Arctic glacier. Appl Environ Microbiol 66:3214–3220, 10.1128/AEM.66.8.3214-3220.2000
  • SonjakSFrisvadJCGunde-CimermanN. 2005. Comparison of secondary metabolite production by Penicillium crustosum strains, isolated from Arctic and other various ecological niches. FEMS Microbiol Ecol 53: 51–60, 10.1016/j.femsec.2004.10.014
  • SonjakSFrisvadJCGunde-CimermanN. 2006. Penicillium mycobiota in Arctic subglacial ice. Microb Ecol 52:207–216, 10.1007/s00248-006-9086-0
  • SonjakSFrisvadJCGunde-CimermanN. 2007a. Genetic variation among Penicillium crustosum isolates from arctic and other ecological niches. Microb Ecol 54:298–305, 10.1007/s00248-006-9202-1
  • SonjakSUrsicVFrisvadJCGunde-CimermanN. 2007b. Penicillium svalbardense, a new species from Arctic glacial ice. Anton Leeuw Int J G 92:43–51, 10.1007/s10482-006-9133-3
  • StarmerWTFellJWCatranisCMAberdeenVMaLJZhouSRogersSO. 2005. Yeasts in the genus Rhodotorula recovered from the Greenland ice sheet. In: CastelloJDRogersSO, eds. life in ancient ice. Princeton, New Jersey: Princeton Univ Press. p 181–195.
  • SuhSOMcHughJVPollockDDBlackwellM. 2005. The beetle gut: a hyperdiverse source of novel yeast. Mycol Res 109:261–265, 10.1017/S0953756205002388
  • TakanoYKobayashiKMarumoKIshikawaY. 2004. Biochemical indicators and enzymatic activity below permafrost environment. In: Extremophiles 2004, 5th International Conference on Extremophiles, 19–23 Sep. Cambridge, Maryland. Abstract p 84.
  • TakishitaKMiyakeHKawatoMMaruyamaT. 2005. Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny. Extremophiles 9:185–196, 10.1007/s00792-005-0432-9
  • TakishitaKTsuchiyaMReimerJDMaruyamaT. 2006. Molecular evidence demonstrating the basidiomycetous fungus Crytococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane seep. Extremophiles 10:165–169, 10.1007/s00792-005-0495-7
  • Thomas-HallSRTurchettiBBuzziniPBrandaEBoekhoutTTheelenBWatsonK. 2010. Cold-adapted yeasts from Antarctica and Alps: description of three novel species: Mrakia robertii sp. nov., Mrakia blollop sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59, 10.1007/s00792-009-0286-7
  • ThormannMCurrahRSBayleySE. 2001. Microfungi isolated from Sphagnum fuscum from a southern boreal bog in Alberta, Canada. Bryologist 104: 548–559, 10.1639/0007-2745(2001)104[0548:MIFSFF]2.0.CO;2
  • TorsvikVØvreåsL. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr Op Microbiol 5: 240–245, 10.1016/S1369-5274(02)00324-7
  • TosiSCasadoBGerdolRCarettaG. 2002. Fungi isolated from Antarctic mosses. Polar Biol 25:262–268.
  • TurchettiBBuzziniPGorettiMBrandaEDiolaiutiGD’AgataCSmiragliaCVaughan-MartiniA. 2008. Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83, 10.1111/j.1574-6941.2007.00409.x
  • U’renJMLutzoniFMiadlikowskaJArnoldAE. 2010. Community analysis reveals close affinities between endophytic and endolichenic fungi in mosses and lichens. Microb Ecol 60:340–353, 10.1007/s00248-010-9698-2
  • van GemerdenH. 1993. Microbial mats: a joint venture. Mar Geol 113:3–25, 10.1016/0025-3227(93)90146-M
  • VasconcelosCWarthmannRMcKenzieJAVisscherPTBittermannAGvan LithY. 2006. Lithifying microbial mats in Lagoa Vermelha, Brazil: modern precambrian relics? Sediment Geol 185:175–183, 10.1016/j.sedgeo.2005.12.022
  • VishniacHSOnofriS. 2003. Cryptococcus antarcticus var. circumpolaris var. nov., a basidiomycetous yeast from Antarctica. Antonie van Leuwenhoek 83:231–233, 10.1023/A:1023369728237
  • VisscherPTStolzJF. 2005. Microbial mats as bioreactors: populations, processes and products. Paelogeogr Paleoclimatol Paleooecol 219:87–100, 10.1016/j.palaeo.2004.10.016
  • WeirAHammondPM. 1997. Laboulbeniales on beetles: host utilization patterns and species richness of the parasites. Biodivers Conserv 6:701–716, 10.1023/A:1018318320019
  • WilmsRSassHKöpkeBKösterJCypionkaHEngelenB. 2006. Specific Bacterial, Archaeal, and Eukaryotic communities in tidal-flat sediments along a vertical profile of several meters. Appl Environ Microbiol 72: 2756–2764, 10.1128/AEM.72.4.2756-2764.2006
  • WilsonMSSieringPLWhiteCLHauserMEBartlesAN. 2008. Novel Archaea and Bacteria dominate stable microbial communities in North America’s largest hot spring. Microb Ecol 56:292–305, 10.1007/s00248-007-9347-6
  • WuTAyresELiGBardgettRDWallDHGareyJR. 2009. Molecular profiling of soil animal diversity in natural ecosystems: incongruence of molecular and morphological results. Soil Biol Biochem 41:849–857, 10.1016/j.soilbio.2009.02.003
  • ZakJCWildmanHG. 2004. Fungi in stressful environments. In: MuellerGMBillsGFFosterMS, eds. Biodiversity of fungi: inventory and monitoring methods. New York: Elsevier Academic Press. p 303–315.
  • ZalarPde HoogGSSchroersH-JCrousJGroenewaldJZGunde-CimermanN. 2007. Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud Mycol 58:157–183, 10.3114/sim.2007.58.06
  • ZalarPde HoogGSSchroersH-JFrankJMGunde-CimermanN. 2005. Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie van Leeuwenhoek 87:311–328, 10.1007/s10482-004-6783-x
  • ZalarPGostincarCde HoogGSUrsicVSudhadhamMGunde-CimermanN. 2008. Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38, 10.3114/sim.2008.61.02
  • ZuccaroASchulzBMitchellJI. 2003. Molecular detection of ascomycetes associated with Fucus serratus. Mycol Res 107:1451–1466, 10.1017/S0953756203008657

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.