164
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Gene expression profiling of the plant pathogenic basidiomycetous fungus Rhizoctonia solani AG 4 reveals putative virulence factors

, , , &
Pages 1020-1035 | Accepted 23 Mar 2012, Published online: 20 Jan 2017

Literature Cited

  • AgriosGN. 2005. Plant pathology. Burlington, Massachusetts: Elsevier Academic Press. 922 p.
  • AmundsenKWarnkeSGeunhwaJLakshmanDK. 2009. Next generation sequencing on species important to the turfgrass industry. Crop Science Society meeting, Pittsburg, Pennsylvania, 1–5 Nov (abstract). (http://as.confex.com/crops/2009am/webprogram/Paper53038.html)
  • AnSHSohnKHChoiHWHwangISLeeSCHwangBK. 2008. Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta 228:61–78, doi:10.1007/s00425-008-0719-z
  • AndersonNA. 1982. The genetics and pathology of Rhizoctonia solani. Annu Rev Phytopathol 20:329–347, doi:10.1146/annurev.py.20.090182.001553
  • ArmentroutVNDownerAJGrasmickDLWeinholdAR. 1987. Factors affecting infection cushion development by Rhizoctonia solani on cotton. Phytopathology 77:623–630, doi:10.1094/Phyto-77-623
  • BaidyaroyDBroschGAhnJ-HGraessle WegenerSTonukariNJCaballeroOLoidlPWaltonJD. 2001. A gene related to yeast HOS2 histone deacetylase affects extracellular depolymerase expression and virulence in a plant pathogenic fungus. Plant Cell 13:1609–1624.
  • BergemannMLespinetOM'BarekSBDaboussiM-JDufresneM. 2008. Genome-wide analysis of the Fusarium oxysporum mimp family of MITEs and mobilization of both native and de novo created mimps. J Mol Evol 67:631–642, doi:10.1007/s00239-008-9164-7
  • BonaldoMFLennonGSoaresMB. 1996. Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res 6:791–806, doi:10.1101/gr.6.9.791
  • BouzidiMFParlangeFNicolasPMouzeyarS. 2007. Expressed sequence tags from the oomycete Plasmopara halstedii, an obligate parasite of the sunflower. BMC Microbiol7:110, doi:10.1186/1471-2180-7-110
  • BurpeeLL. 1995. Interactions among mowing height, nitrogen fertility and cultivar affect the severity of Rhizoctonia blight of tall fescue. Plant Dis 79:721–729, doi:10.1094/PD-79-0721
  • CarlingDEBairdREGitaitisRDBrainardKAKuninagaS. 2002. Characterization of AG-13, a newly reported anastomosis group of Rhizoctonia solani. Phytopathology 92:893–899, doi:10.1094/PHYTO.2002.92.8.893
  • CatenCE. 1972. Vegetative incompatibility and cytoplasmic infection of fungi. J Gen Microbiol 72:221–229.
  • ChevanneDBastiaansEDebetsASaupeSJClaveCPaolettiM. 2009. Identification of the het-r vegetative incompatibility gene of Podospora anserina as a member of the fast evolving HNWD gene family. Curr Genet 55:93–102, doi:10.1007/s00294-008-0227-5
  • ChevanneDSaupeSJClavéCPaolettiM. 2010. WD-repeat instability and diversification of the Podospora anserina hnwd non-self recognition gene family. BMC Evol Biol10:134, doi:10.1371/journal.pone.0000283.
  • ConesaAGotzSGarcia-GomezJMTerolJTalonMRoblesM. 2005. BLAST2go: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676, doi:10.1093/bioinformatics/bti610
  • CosgroveDJDurachkoDMLiL-C. 1998. Expansins may have cryptic endoglucanase activity and can synergize the breakdown of cellulose by fungal cellulases. Ann Meeting Am Soc Plant Physiol Abstract. 171 p.
  • DaboussiMCapyP. 2003. Transposable elements in filamentous fungi. Annu Rev Microbiol 57:275–299, doi:10.1146/annurev.micro.57.030502.091029
  • del SorboGSchoonbeekHde WaardMA. 2000. Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol 30:1–15, doi:10.1006/fgbi.2000.1206
  • DubovenkoAGDunaevskyYYBelozerskyMAOppertBSLordJCElpidinaEN. 2010. Trypsin-like proteins of the fungi as possible markers of phytopathogenicity. Fungal Biol 114:151–159, doi:10.1016/j.funbio.2009.11.004
  • EbboleDJJinYThonMPanHBhattaraiEThomasTDeanR. 2004. Gene discovery and gene expression in the rice blast fungus, Magnaporthe grisea: analysis of expressed sequence tags. Mol Plant-Microbe Interact 17:1337–1347, doi:10.1094/MPMI.2004.17.12.1337
  • EvansNRobertsNHitchcockDMarshallG. 1995. Assessing linseed (Linum usitatissimum) resistance to Alternaria linicola using a detached cotyledon assay. Ann Appl Biol 127:263–271, doi:10.1111/j.1744-7348.1995.tb06671.x
  • FalguerasJLaraAJFernandez-PozoNCantonFRPerez-TrabadoGClarosMG. 2010. SeqTrim: a high-throughput pipeline for preprocessing any type of sequence reads. BMC Bioinformatics 11:38, doi:10.1186/1471-2105-11-38
  • FaureD. 2002. The family-3 glycoside hydrolases: from housekeeping functions to host-microbe interactions. Appl Environ Microbiol 68:1485–1490, doi:10.1128/AEM.68.4.1485-1490.2002
  • Fernandez-AlvarezAElias-VillalobosAIbeasJI. 2009. The O-mannosyltransferase PMT4 is essential for normal appressorium formation and penetration in Ustilago maydis. Plant Cell 21:3397–3412, doi:10.1105/tpc.109.065839
  • FethiereJEggimannBCyglerM. 1999. Crystal structure of chondroitin AC lyase, a representative of a family of glycosaminoglycan degrading enzymes. J Mol Biol 288:635–641, doi:10.1006/jmbi.1999.2698
  • FosterAJJenkinsonJMTalbotNJ. 2003. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J 22:225–235, doi:10.1093/emboj/cdg018
  • Garnier-GerePDillmannC. 1992. A computer program for testing pairwise linkage disequilibria in subdivided populations. J Hered 83:239.
  • GilpatrickJD, ed. 1979. Contemporary control of plant diseases with chemicals: present status, future prospects and proposal for action. St Paul, Minnesota: American Phytopathological Society.
  • González GarcíaVPortal OncoMASusanR. 2006. Biology and systematics of the form genus Rhizoctonia. Spanish J Agric Res 4:55–79.
  • GranthamRGautierCGouyMJacobzoneMMercierR. 1981. Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res 9:r43–r74, doi:10.1093/nar/9.1.213-b
  • HolyoakeAJKidwellMG. 2003. Vege and Mar: two novel hAT MITE families from Drosophila willistoni. Mol Biol Evol 20:163–167, doi:10.1093/molbev/msg023
  • HongYColeTEBrasierCMBuckKW. 1998. Evolutionary relationships among putative RNA-dependent RNA polymerases encoded by a mitochondrial virus-like RNA in the Dutch elm disease fungus, Ophiostoma novo-ulmi, by other viruses and virus-like RNAs and by the Arabidopsis mitochondrial genome. Virology 246:158–169, doi:10.1006/viro.1998.9178
  • HuangXMadanA. 1999. CAP3: a DNA sequence assembly program. Genome Res 9:868–877, doi:10.1101/gr.9.9.868
  • JegerMJHideGAvan den BoogertPHJFTermorshuizenAJvan BaarlenP. 1996. Soilborne fungal pathogens of potato. Potato Res 39:437–469, doi:10.1007/BF02357949
  • JianJLakshmanDKTavantzisSM. 1997. Association of distinct double-stranded RNAs with enhanced or diminished virulence in Rhizoctonia solani infecting potato. Mol Plant-Microbe Interact 10:1002–1009, doi:10.1094/MPMI.1997.10.8.1002
  • JianJLakshmanDKTavantzisSM. 1998. A virulence-associated 6.4 kb dsRNA from Rhizoctonia solani is phylogenetically related to plant bromoviruses and electron transport enzymes. Mol Plant-Microbe Interact 11:601–609, doi:10.1094/MPMI.1998.11.7.601
  • JulianMCDebetsFKeijerJ. 1996. Independence of sexual and vegetative incompatibility mechanisms of Thanatephorus cucumeris (Rhizoctonia solani) anastomosis group 1. Phytopathology 86:566–574, doi:10.1094/Phyto-86-566
  • KatariaHRGroverRK. 1975. Inhibition of infection structures of Rhizoctonia solani by fungitoxicants. Z Pflkrankh PflSchutz 82:226–232.
  • KeijerJKorsmanMGDullemansAMHoutermanPMde BreeJvan SilfhoutCH. 1997. In vitro analysis of host plant specificity in Rhizoctonia solani. Plant Pathol 46:659–669, doi:10.1046/j.1365-3059.1997.d01-61.x
  • KempkenFKückU. 1998. Transposons in filamentous fungi—facts and perspectives. BioEssays 20:652–659, doi:10.1002/(SICI)1521-1878(199808)20:8<652::AID-BIES8>3.0.CO;2-K
  • KimHAhnJ-HJorlachJMCaprariCScott-CraigJSWaltonJD. 2001. Mutational analysis of two betaglucanase genes, EXG2 and MLG2, from the plant pathogenic fungus Cochliobolus carbonum. Mol Plant-Microbe Interact 14:1436–1443, doi:10.1094/MPMI.2001.14.12.1436
  • KishoreGSugumaranMVaidyanathanCS. 1976. Metabolism of DL-(±)-phenylalanine by Aspergillus niger. J Bacteriol 128:182–191.
  • KousikCSSnowJPBerggrenGT. 1994. Factors affecting infection cushion development by Rhizoctonia solani AG-1 IA and IB on soybean leaves. Plant Pathol 43:237– 244, doi:10.1111/j.1365-3059.1994.tb02681.x
  • KringsUHinzMBergerRG. 1996. Degradation of [2H]phenylalanine by the basidiomycete Ischnoderma benzoinum. J Biotechnol 51:123–129, doi:10.1016/0168-1656(96)01589-1
  • KruppaMCalderoneR. 2006. Two-component signal transduction in human fungal pathogens. FEMS Yeast Res 6:149–159, doi:10.1111/j.1567-1364.2006.00024.x
  • KuninagaS. 1996. DNA base sequence complementarity analysis. In: SnehBJabaji-HareSNeateSDijstG, eds. Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Dordrecht, the Netherlands:Kluwer Academic Publishers. p 73–80.
  • LakshmanDKJianJTavantzisSM. 1998. A novel mitochondrial double-stranded RNA found in a hypovirulent strain of Rhizoctonia solani occurs in DNA form and is phylogenetically related to the pentafunctional AROM protein of the shikimate pathway. Proc Natl Acad Sci USA 95:6425–6429, doi:10.1073/pnas.95.11.6425
  • LakshmanDKLiuCMishraPKTavantzisSM. 2006. Characterization of the arom gene in Rhizoctonia solani, and transcription patterns under stable and induced hypovirulence conditions. Curr Genet 49:166–177, doi:10.1007/s00294-005-0005-6
  • LakshmanDKNatarajanSSGarrettWLakshmanSDharAK. 2008. Optimized protein extraction methods for proteomic analysis of Rhizoctonia solani. Mycologia 100:867–875, doi:10.3852/08-065
  • LakshmanDKTavantzisSM. 1994. Spontaneous appearance of genetically distinct double-stranded RNA elements in Rhizoctonia solani. Phytopathology 84:633–639, doi:10.1094/Phyto-84-633
  • LeeMCMillerEA. 2007. Molecular mechanisms of COPII vesicle formation. Semin Cell Dev Biol 18:424–34, doi:10.1016/j.semcdb.2007.06.007
  • LewisJAPapavizasGC. 1987. Reduction of inoculum of Rhizoctonia solani in soil by germlings of Trichoderma hamatum. Soil Biol Biochem 19:195–201, doi:10.1016/0038-0717(87)900812
  • LiJYuLYangJDongLTianBYuZLiangLZhangYWangXZhangK. 2010. New insights into the evolution of subtilisin-like serine protease genes in pezizomycotina. BMC Evol Biol 10:68+, doi:10.1186/1471-2148-10-68
  • LiRLiQKongL. 2009. Characterization of expressed sequence tag-derived single-nucleotide polymorphisms in the bay scallop Argopecten irradians. Fish Sci 75:1389–1400, doi:10.1007/s12562-009-0167-0
  • LiuCLakshmanDKTavantzisSM. 2003a. Quinic acid induces hypovirulence, and expression of a hypovirulence-associated double-stranded RNA in Rhizoctonia solani. Curr Genet 43:103–111.
  • LiuCLakshmanDKTavantzisSM. 2003b. Expression of a hypovirulence-causing double-stranded RNA (dsRNA) is associated with up-regulation of quinic acid pathway, and down-regulation of shikimic acid pathway in Rhizoctonia solani. Curr Genet 42:284–291.
  • LoWSDranginisAM. 1998. The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9:161–171.
  • LübeckMLübeckPS. 2005. Universally primed PCR (UPPCR) and its application in mycology. In: DeshmukhSKRaiMK, eds. Biodiversity of fungi—their role in human life. Enfield, New Hampshire: Science Publishers Inc.
  • ManiatisTFritschEFSambrookJ. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor, New York:Cold Spring Harbor Laboratory Press. p 368–369.
  • MartinSBLucasLTCampbellCL. 1984. Comparative sensitivity of Rhizoctonia solani and Rhizoctonia-like fungi to selected fungicides in vitro. Phytopathology 74:778–781, doi:10.1094/Phyto-74-778
  • MarzlufGA. 1997. Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17–32.
  • MayPWienkoopSKempaSUsadelBChristianNRupprechtJWeissJRecuenco-MunozLEbenhöhOWeckwerthWWaltherD. 2008. Metabolomics- and proteomics-assisted genome annotation and analysis of the draft metabolic network of Chlamydomonas reinhardtii. Genetics 179:157–166, doi:10.1534/genetics.108.088336
  • MichielseCBRepM. 2009. Pathogen profile updat: Fusarium oxysporum. Mol Plant Pathol 10:311–324, doi:10.1111/j.1364-3703.2009.00538.x
  • MotoyamaTKadokuraKOhiraTIchiishiAFujimuraMYamaguchiIKudoT. 2005. A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action. Fungal Genet Biol 42:200–212, doi:10.1016/j.fgb.2004.11.002
  • NiwaJIshigakiSDoyuMSuzukiTTanakaKSobueG. 2001. A novel centrisomal RING-finger protein, Dorfin, mediates ubiquitin ligase activity. Biochem Biophys Res Commun 281:706–713, doi:10.1006/bbrc.2001.4414
  • NugentKChoffeKSavilleBJ. 2004. Gene expression during Ustilago maydis diploid filamentous growth: EST library creation and analyses. Fungal Genet Biol 41:349–360, doi:10.1016/j.fgb.2003.11.006
  • OchiSNakagawaA. 2010. A simple method for long-term cryopreservation of Calonectria ilicicola on barley grains. J Gen Plant Pathol 76:112–115, doi:10.1007/s10327-009-0217-6
  • OgoshiA. 1996. Introduction —the genus Rhizoctonia. In: SnehBJabaji-HareSNeateSDijstG, eds. Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Dordrecht, the Netherlands:Kluwer Academic Publishers. p 1–9.
  • OlsonGMFoxDSWangPAlspaughJABuchananKL. 2007. Role of protein O-mannosyltransferase Pmt4 in the morphogenesis and virulence of Cryptococcus neoformans. Eukaryot Cell 6:222–234, doi:10.1128/EC.00182-06
  • OrellanaRGMandavaNB. 1983. M-Hydroxyphenylacetic and M-methoxyphenylacetic acids of Rhizoctonia solani: their effect on specific root-nodule activity and histopathology in soybean. Phytopathology 107:159–167, doi:10.1111/j.1439-0434.1983.tb00063.x
  • PuttikamonkulSWillgerSDGrahlNPerfectJRMovahedNBothnerBParkSPaderuPPerlinDSCramerRAJr.2010. Trehalose 6-phosphate phosphatase is required for cell wall integrity and fungal virulence but not trehalose biosynthesis in the human fungal pathogen Aspergillus fumigatus. Mol Microbiol 77:891–911.
  • ReignaultPMercierMBompeixGBoccaraM. 1994. Pectin methyl esterase from Botrytis cinerea: physiological, biochemical and immunochemical studies. Microbiology 140:3249–3255, doi:10.1099/13500872-140-12-3249
  • RicePLongdenIBleasbyA. 2000. EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277, doi:10.1016/S0168-9525(00)02024-2
  • RickerlDHCurlEATouchtonJTGordonWB. 1992. Crop mulch effects on Rhizoctonia soil infestation and disease severity in conservation-tilled cotton. Soil Biol Biochem 24:553–557, doi:10.1016/0038-0717(92)90080-H
  • RothrockCSKirkpatrickTLFransREScottHD. 1995. The influence of winter legume cover crops on soilborne plant pathogens and cotton seedling diseases. Plant Dis 79:167–171, doi:10.1094/PD-79-0167
  • RuddS. 2003. Expressed sequence tags: alternative or complement to whole genome sequences? Trends Plant Sci 8:321–329, doi:10.1016/S1360-1385(03)00131-6
  • SangerFNicklenSCoulsonAR. 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467, doi:10.1073/pnas.74.12.5463
  • SappersteinSBerkowerCMichaelisS. 1994. Nucleotide sequence of the yeast STE14 gene, which encodes farnesylcysteine carboxyl methyltransferase, and demonstration of its essential role in a-factor export. Mol Cell Biol 14:1438–1449.
  • SaupeSJ. 2000. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Rev 64:489–502, doi:10.1128/MMBR.64.3.489-502.2000
  • SchoonbeekHJRaaijmakersJMde WaardMA. 2002. Fungal ABC transporters and microbial interactions in natural environments. Mol Plant-Microbe Interact 15:1165–1172, doi:10.1094/MPMI.2002.15.11.1165
  • SextonACHowlettBJ. 2006. Parallels in fungal pathogenesis on plant and animal hosts. Eukaryot Cell 5:1941–1949, doi:10.1128/EC.00277-06
  • SoanesDMAlamICornellMWongHMHedelerCPatonNWRattrayMHubbardSJOliverSGTalbotNJ. 2008. Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS ONE 3:e2300, doi:10.1371/journal.pone.0002300
  • SreedharLKobayashiDBuntingTEHillmanBIBelangerFC. 1999. Fungal protease expression in the interaction of the plant pathogen Magnaporthe poae with its host. Gene 235:121–129, doi:10.1016/S0378-1119(99)00201-2
  • StraussEELakshmanDKTavantzisSM. 2000. Molecular characterization of the genome of a partivirus from the basidiomycete Rhizoctonia solani. J Gen Virol 81:549–555.
  • SuganoYMuramatsuRIchiyanagiASatoTShodaM. 2007. DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family: ASP171 replaces the distal histidine of classical peroxidases. J Biol Chem 282:36652–36658, doi:10.1074/jbc.M706996200
  • ThinesEWeberRTalbotNJ. 2000. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:1703–1718.
  • ThonMRNucklesEMTakachJEVaillancourtLJ. 2002. CPR1: a gene encoding a putative signal peptidase that functions in pathogenicity of Colletotrichum graminicola to maize. Mol Plant-Microbe Interact 15:120–128, doi:10.1094/MPMI.2002.15.2.120
  • TsrorL. 2010. Biology, epidemiology and management of Rhizoctonia solani on potato. J Phytopathol 10:649–658, doi:10.1111/j.1439-0434.2010.01671.x
  • TuCHsiehTChangY. 1996. Vegetable diseases incited by Rhizoctonia spp. In: SnehBJabaji-HareSNeateSDijstG, eds. Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Dordrecht, the Netherlands:Kluwer Academic Publishers. p 369–377.
  • VerdunREDi PaoloNUrmenyiTPRondinelliEFraschACSanchezDO. 1998. Gene discovery through expressed sequence tag sequencing in Trypanosoma cruzi. Infect Immun 66:5393–5398.
  • ViaudMLegeaiFPradierJMBrygooYBittonFWeissenbachJBrunet-SimonADuclertAFillingerSFortiniDGiotiAGiraudCHalarySLebrunILe PecheurPSamsonDLevisC. 2005. Expressed sequence tags from the phytopathogenic fungus Botrytis cinerea. Eur J Plant Pathol 111:139–146, doi:10.1007/s10658-004-1429-4
  • WaksmanG. 1988. Molecular cloning of genes expressed specifically during induction of cell wall-degrading enzymes from Sclerotinia sclerotiorum and preliminary identification of a fungal beta-galactosidase encoding gene by expression in Escherichia coli. Curr Genet 14:91–93, doi:10.1007/BF00405858
  • WeberIGruberCSteinbergG. 2003. A Class-V myosin required for mating, hyphal growth and pathogenicity in the dimorphic plant pathogen Ustilago maydis. Plant Cell 15:2826–2842, doi:10.1105/tpc.016246
  • WeinholdARBowmanT. 1974. Repression of virulence in Rhizoctonia solani by glucose and 3-O-methyl glucose. Phytopathology 64:985–990, doi:10.1094/Phyto-64-985
  • WeinholdARBowmanTDodmanRL. 1969. Virulence of Rhizoctonia solani as affected by nutrition of the pathogen. Phytopathology 59:1601–1605.
  • WeinholdARSinclairJB. 1996. Rhizoctonia solani: penetration, colonization and host response. In: SnehBJabaji-HareSNeateSDijstG, eds. Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Dordrecht, the Netherlands:Kluwer Academic Publishers. p 163–174.
  • XueCParkGChoiWZhengLDeanRAXuJR. 2002. Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. Plant Cell 14:2107–2119, doi:10.1105/tpc.003426
  • YinQYde GrootPWde KosterCGKlisFM. 2008. Mass spectrometry-based proteomics of fungal wall glycoproteins. Trends Microbiol 16:20–26, doi:10.1016/j.tim.2007.10.011
  • YoderOCTurgeonBG. 2001. Fungal genomics and pathogenicity. Curr Opin Plant Biol 4:315–321, doi:10.1016/S1369-5266(00)00179-5
  • ZhaoXMehrabiRXuJR. 2007. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryotic Cell 6:1701–1714, doi:10.1128/EC.00216-07

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.