283
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Farnesol induces apoptosis-like cell death in the pathogenic fungus Aspergillus flavus

, , &
Pages 881-888 | Received 11 Sep 2013, Accepted 29 Mar 2014, Published online: 20 Jan 2017

Literature cited

  • AlmeidaBSilvaAMesquitaASarripalo-MarquesBRodriguesFLudovicoP. 2008. Drug-induced apoptosis in yeast. Biochim Biophys Acta - Mol Cell Res 1783: 1436–1448, doi:10.1016/j.bbamcr.2008.01.005
  • BenharMDalyotIEngelbergDLevitzkiA. 2001. Enhanced ROS production in oncogenically transformed cells potentiates c-Jun n-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol Cell Biol 21:6913–6926, doi:10.1128/MCB.21.20.6913-6926.2001
  • BernardiPRasolaA. 2007. Calcium and cell death: the mitochondrial connection. Subcell. Biochem 45:481–506, doi:10.1007/978-1-4020-6191-2_18
  • BoniniMGRotaCTomasiAMasonRP. 2006. The oxidation of 2′,7′-dichlorofluorescin to reactive oxygen species: a self-fulfilling prophesy? Free Radic Biol Med 40:968–975, doi:10.1016/j.freeradbiomed.2005.10.042
  • Camello-AlmarazCGomez-PinillaPJPozoMJCamelloPJ. 2006. Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol Cell Physiol. 291:C1082–C1088, 10.1152/ajpcell.00217.2006
  • CampbellCK. 1994. Forms of aspergillosis. In the genus Aspergillus. New York: Plenum Press, 313 p, 320 pl.
  • ChenCBDickmanMB. 2005. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Natl Acad Sci USA 102:3459–3464, doi:10.1073/pnas.0407960102
  • ChengJJParkTSChioLCFischiASYeXS. 2003. Induction of apoptosis by sphingoid long-chain bases in Aspergillus nidulans. Mol Cell Biol 23:163–177, doi:10.1128/MCB.23.1.163-177.2003
  • ColabardiniACde CastroPAde GouvêaPFSavoldiMMalavaziIGoldmanMHSGoldmanGH. 2010. Involvement of the Aspergillus nidulans protein kinase C with farnesol tolerance is related to the unfolded protein response. Mol Microbiol 78:1259–1279, doi:10.1111/j.1365-2958.2010.07403.x
  • CotorasMCastroPVivancoHMeloRMendozaL. 2013. Farnesolinduces apoptosis-like phenotype in the phytopathogenic fungus Botrytis cinerea. Mycologia 105:28–33, doi:10.3852/12-012
  • DenningDWRiniotisKDobrashianRSambatakouH. 2003. Chronic cavitary and fibrosing pulmonary and pleural aspergillosis: case series, proposed nomenclature change and review. Clin Infect Dis 37:S265–S280, doi:10.1086/376526
  • DichtlKEbelFDirrFRoutierFHHeesemannJWagenerJ. 2010. Farnesol misplaces tip-localized Rho proteins and inhibits cell wall integrity signaling in Aspergillus fumigatus. Mol Microbiol 76:1191–1204, doi:10.1111/j.1365-2958.2010.07170.x
  • EdwardsPAEricssonJ. 1999. Sterols and isoprenoids: signaling molecules derived from the cholesterol biosynthetic pathway. Annu Rev Biochem 68:157–185, doi:10.1146/annurev.biochem.68.1.157
  • GuoHGMaAZZhaoGHYunJLLiuXZhangHXZhuangGQ. 2011. Effect of farnesol on Penicillium decumbens’s morphology and cellulase production. Bioresources 6:3252–3259.
  • HemmerlinAReentsRMuttererJFeldtrauerJFWaldmannHBachTJ. 2006. Monitoring farnesol-induced toxicity in tobacco BY-2 cells with a fluorescent analog. Arch Biochem Biophys 448:93–103, doi:10.1016/j.abb.2005.10.017
  • ItoSIharaTTamuraHTanakaSIkedaTKajiharaHDissanayakeCAbdel-MotaalFFEl-SayedMA. 2007. α-tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum. FEBS Lett 581:3217–3222, doi:10.1016/j.febslet.2007.06.010
  • KobayashiDKondoKUeharaNOtokozawaSTsujiNYagihashiAWatanabeN. 2002. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob Agents Chemother 46: 3113–3117, doi:10.1128/AAC.46.10.3113-3117.2002
  • LeiterÉSzappanosHOberparleiterCKaisererLCsernochLPusztahelyiTEmriTPócsiISalvenmoserWMarxF. 2005. Antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans and induces an apoptosis-like phenotype. Antimicrob Agents Chemother 49:2445–2453, doi:10.1128/AAC.49.6.2445-2453.2005
  • LigrMMadeoFFrohlichEHiltWFrohlichK-UWolfDH. 1998. Mammalian bax triggers apoptotic changes in yeast. FEBS Lett 438:61–65, doi:10.1016/S0014-5793(98)01227-7
  • LiuPDengBLongC-AMinX. 2009. Effect of farnesol on morphogenesis in the fungal pathogen Penicillium expansum. Ann Microbiol 59:33–38, doi:10.1007/BF03175595
  • LorekJPöggelerSWeideMRBrevesRBockmühlDP. 2008. Influence of farnesol on the morphogenesis of Aspergillus niger. J Basic Microbiol 48:99–103, doi:10.1002/jobm.200700292
  • MachidaKTanakaTFujitaK-iTaniguchiM. 1998. Farnesol-induced generation of reactive oxygen species via indirect inhibition of the mitochondrial electron transport chain in the yeast Saccharomyces cerevisiae. J Bacteriol 180:4460–4465.
  • MarekSMWuJGlassNLGilchristDGBostockRM. 2003. Nuclear DNA degradation during heterokaryon incompatibility in Neurospora crassa. Fungal Genet Biol 40: 126–137, doi:10.1016/S1087-1845(03)00086-0
  • MarxFBinderULeiterEPócsiI. 2008. The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cell Mol Life Sci 65:445–454, doi:10.1007/s00018-007-7364-8
  • MelloEORibeiroSFFCarvalhoAOSantosISda CunhaMSanta-CatarinaCGomesVM. 2011. Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification and induction of ROS in fungi cells. Curr Biol 62:1209–1217.
  • MousaviSARobsonGD. 2004. Oxidative and amphotericin B-mediated cell death in the opportunistic pathogen Aspergillus fumigatus is associated with an apoptosis-like phenotype. Microbiology 150: 1937–1945, doi:10.1099/mic.0.26830-0
  • OrreniusSZhivotovskyBNicoteraP. 2003. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565, doi:10.1038/nrm1150
  • PengTIJouMJ. 2010. Oxidative stress caused by mitochondrial calcium overload. Ann NY Acad Sci 1201:183–188, doi:10.1111/j.1749-6632.2010.05634.x
  • PhillipsAJSudberyIRamsdaleM. 2003. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc Nat Acad Sci USA 100: 14327–14332, doi:10.1073/pnas.2332326100
  • PintoEVale-SilvaLCavaleiroCSalgueiroL. 2009. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J Med Microbiol 58:1454–1462, doi:10.1099/jmm.0.010538-0
  • PozniakovskyAIKnorreDAMarkovaOVHymanAASkulachevVPSeverinFF. 2005. Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J Cell Biol 168:257–269, doi:10.1083/jcb.200408145
  • QiGFZhuFYDuPYangXFQiuDWYuZNChenJYZhaoXY. 2010. Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides 31:1978–1986, doi:10.1016/j.peptides.2010.08.003
  • RiojaaAPizzeybARMarsonaCMThomasbNSB. 2000. Preferential induction of apoptosis of leukaemic cells by farnesol. FEBS Lett 467:291–295, doi:10.1016/S0014-5793(00)01168-6
  • RizzutoRMarchiSBonoraMAguiariPBononiAStefaniDDGiorgiCLeoSRimessiASivieroRZecchiniEPintonP. 2009. Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787:1342–1351, doi:10.1016/j.bbabio.2009.03.015
  • RizzutoRPozzanT. 2006. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408, doi:10.1152/physrev.00004.2005
  • RozeLVLinzJE. 1998. Lovastatin triggers an apoptosis-like cell death process in the fungus Mucor racemosus. Fungal Genet Biol 25:119–133, doi:10.1006/fgbi.1998.1093
  • SemighiniCPHornbyJMDumitruRNickersonKWHarrisSD. 2006. Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol Microbiol 59:753–764, doi:10.1111/j.1365-2958.2005.04976.x
  • SemighiniCPHornbyJMDumitruRNickersonKWMurrayNHarrisSD. 2008. Inhibition of Fusarium graminearum growth and development by farnesol. FEMS Microbiol Lett 279: 259–264, doi:10.1111/j.1574-6968.2007.01042.x
  • SharonAFinkelsteinAShlezingerNHatamI. 2009. Fungal apoptosis: function, genes and gene function. FEMS Microbiol Rev 33:833–854, doi:10.1111/j.1574-6976.2009.00180.x
  • ShiMChenLWangXWZhangTZhaoPBSongXYSunCYChenXLZhouBCZhangYZ. 2012. Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology 158:166–175, doi:10.1099/mic.0.052670-0
  • ShirtliffMEKromBPMeijeringRAMPetersBMZhuJScheperMAHarrisMLJabra-RizkMA. 2009. Farnesol-induced apoptosis in Candida albicans. Antimicrob Agents Chemother 53:2392–2401, doi:10.1128/AAC.01551-08
  • SquireRA. 1981. Ranking animal carcinogens: a proposed regulatory approach. Science 214:877–880, doi:10.1126/science.7302565
  • SzabadkaiGSimoniAMBianchiKStefaniDDLeoSWieckowskiMRRizzutoR. 2006. Mitochondrial dynamics and Ca2+ signaling. Biochim Biophys Acta 1763:442–449, doi:10.1016/j.bbamcr.2006.04.002
  • TrompierDChangXBBarattinRd’HardemareAdi PietroABaubichon-CortayH. 2004. Verapamil and its derivative trigger apoptosis through glutathione extrusion by multidrug resistance protein MRP1. Cancer Res 64:4950–4956, doi:10.1158/0008-5472.CAN-04-0143
  • UrenAGO’RourkeKAravindLAPisabarroMTSeshagiriSKooninEVDixitVM. 2000. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967.
  • WilliamsJHPhillipsTDJollyPEStilesJKJollyCMAggarwalD. 2004. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr 80:1106–1122.
  • WuXZChangWQChengAXSunLMLouHX. 2010. Plagiochin E, an antifungal active macrocyclic bis bibenzyl, induced apoptosis in Candida albicans through a metacaspase-dependent apoptotic pathway. Biochim Biophys Acta 1800:439–447, doi:10.1016/j.bbagen.2010.01.001
  • YanLLiMHCaoYBGaoPHCaoYYWangYJiangYY. 2009. The alternative oxidase of Candida albicans causes reduced fluconazole susceptibility. J Antimicrob Chemother 64:764–773, doi:10.1093/jac/dkp273
  • ZurgilNSolodeevIGilburdBShafranYAfrimzonEAvtalionRShoenfeldYDeutschM. 2004. Monitoring the apoptotic process induced by oxidized low-density lipoprotein in jurkat t-lymphoblast and U937 monocytic human cell lines. Cell Biochem Biophys 40:97–113, doi:10.1385/CBB:40:2:097

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.