184
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Laser capture microdissection to identify septum-associated proteins in Aspergillus nidulans

, , &
Pages 528-532 | Received 04 Aug 2015, Accepted 28 Jan 2016, Published online: 20 Jan 2017

Literature Cited

  • BrouhardGJStearJHNoetzelTLAl-BassamJKinoshitaKHarrisonSCHowardJHymanAA. 2008. XMAP215 is a processive microtubule polymerase. Cell 132:79–88, doi:10.1016/j.cell.2007.11.043
  • ChenXPYinHHuffakerTC. 1998. The yeast spindle pole body component Spc72p interacts with Stu2p and is required for proper microtubule assembly. J Cell Biol 141:1169–1179.
  • Emmert-BuckMRBonnerRFSmithPDChuaquiRFZhuangZGoldsteinSRWeissRALiottaLA. 1996. Laser capture microdissection. Science 274:998–1001.
  • EnkeCZekertNVeithDSchaafCKonzackSFischerN. 2007. Aspergillus nidulans Dis1/XMAP215 protein AlpA localizes to spindle pole bodies and microtubule plus ends and contributes to growth directionality. Eukaryot Cell 6:555–562.
  • GarciaMAVardyLKoonrugsaNTodaT. 2001. Fission yeast ch-TOG/XMAP215 homolog Alp14 connects mitotic spindles with the kinetochore and is a component of the Mad2-dependent spindle checkpoint. EMBO J 20:3389–3401.
  • HerreroSTakeshitaNFischerR. 2011. The Aspergillus nidulans CENP-E kinesin motor KipA interacts with the fungal homolog of the centromere-associated protein CENP-H at the kinetochore. Mol Microbiol 80:981–994, doi:10.1111/j.1365-2958.2011.07624.x.
  • HillTWKäferE. 2001. Improved protocols for Aspergillus minimal medium: trace element and minimal medium salt stock solutions. Fungal Genet Newslett 48:20–21.
  • KonzackSRischitorPEnkeCFischerR. 2005. The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol Biol Cell 16:497–506.
  • KubickovaSCernohorskaHMusilovaPRubesJ. 2002. The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosome Res 10:571–577.
  • LiuYBehrensIVMuthreichNSchützWNordheimAHochholdingerF. 2010. Regulation of the pericycle proteome in maize (Zea mays L.) primary roots by RUM1 which is required for lateral root initiation. Eur J Cell Biol 89:236–241, doi:10.1016/j.ejcb.2009.11.013.
  • MacDonaldMLGrubishaMArionDYatesNLewisDASweetRA. 2014. Laser capture microdissection-targeted mass spectrometry for cortical layer specific multiplexed protein quantification in postmortem human brain tissue. Neuropsychopharmacology 39:448–449.
  • MasudaTTomitaMIshihamaY. 2008. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res 7:731–740, doi:10.1021/pr700658q
  • NayakTSzewczykEOakleyCEOsmaniAUkilLMurraySLHynesMJOsmaniSAOakleyBR. 2006. A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172, 1557–1566.
  • OhkuraHGarciaMATodaT. 2001. Dis1/TOG universal microtubule adaptors-one MAP for all? J Cell Sci 114:3805–3812.
  • TakeshitaNManiaDVegaSHIshitsukaYNienhausGUPodolskiMHowardJFischerR. 2013. The cell-end marker TeaA and the microtubule polymerase AlpA contribute to microtubule guidance at the hyphal tip cortex of Aspergillus nidulans to provide polarity maintenance. J Cell Sci 126:5400–5411, doi:10.1242/jcs.129841
  • TakeshitaNVienkenKRolbetzkiAFischerR. 2007. The Aspergillus nidulans putative kinase, KfsA (kinase for septation), plays a role in septation and is required for efficient asexual spore formation. Fungal Genet Biol 44:1205–1214.
  • TeichertIWolffGKückUNowrousianM. 2012. Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development. BMC Genom 13:511, doi:10.1186/1471-2164-13-511
  • UsuiTMaekawaHPereiraGSchiebelE. 2003. The XMAP215 homolog Stu2 at yeast spindle pole bodies regulates microtubule dynamics and anchorage. EMBO J 22:4779–4793.
  • van DrielKGBoekhoutTWöstenHAVerkleijAJMüllerWH. 2007. Laser microdissection of fungal septa as visualized by scanning electron microscopy. Fungal Genet Biol 44:466–473.
  • ZekertNVeithDFischerR. 2010. Interaction of the Aspergillus nidulans mircrotubule-organizing center (MTOC) component ApsB with gamma-tubulin and evidence for a role of a subclass of peroxisomes in the formation of septal MTOCs. Eukaryot Cell 9:795–805, doi:10.1128/EC.00058-10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.