429
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Fusarium praegraminearum sp. nov., a novel nivalenol mycotoxin-producing pathogen from New Zealand can induce head blight on wheat

, , , , , , & show all
Pages 1229-1239 | Received 19 May 2016, Accepted 12 Aug 2016, Published online: 30 Jan 2017

Literature cited

  • Alexander NJMcCormick SPWaalwijk Cvan der Lee TProctor RH.2011. The genetic basis for 3-ADON and 15-ADON chemotypes in Fusarium. Fungal Genet Biol 48:485–495 doi:10.1016/j.fgb.2011.01.003
  • Aoki TO’Donnell K.1999a. Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the Group I population of F. graminearum. Mycologia 91:597–609 doi:10.2307/3761245
  • Aoki TO’Donnell K.1999b. Morphological characterization of Gibberella coronicola sp. nov., obtained through mating experiments of Fusarium pseudograminearum. Mycoscience 40:443–453 doi:10.1007/BF02461021
  • Aoki TVaughan MMMcCormick SPBusman MWard TJKelly AO’Donnell KJohnston PRGeiser DM.2015. Fusarium dactylidis sp. nov., a novel nivalenol toxin-producing species sister to F. pseudograminearum isolated from orchard grass (Dactylis glomerata) in Oregon and New Zealand. Mycologia 107:409–418 doi:10.3852/14-213
  • Creppy EE.2002. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol Lett 127:19–28 doi:10.1016/S0378-4274(01)00479-9
  • Cuomo CAGüldener UXu J-RTrail FTurgeon BGDi Pietro AWalton JDMa L-JBaker SERep MAdam GAntoniw JBaldwin TCalvo SChang Y-LDecaprio DGale LGnerre SGoswami RSHammond-Kosack KHarris LJHilburn JKennell JKroken SMannhaupt GMauceli EMewes H-WMitterbauer RMuehlbauer GMunsterkotter MNelson DO’Donnell KOuellet TQi WQuesneville HRonceero MIGSeong K-YTetko IVUrban MWaalwijk CWard TJYao JBirren BWKistler HC.2007. The genome sequence of Fusarium graminearum reveals localized diversity and pathogen specialization. Science 317:1400–1402 doi:10.1126/science.1143708
  • Gerlach WNirenberg HI.1982. The genus Fusarium—a pictorial atlas. Mitt Biol Bundesanst Land-Forstw Berlin-Dahlem 209:1–406.
  • Goswami RSKistler HC.2004. Heading for a disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525 doi:10.1111/j.1364-3703.2004.00252.x
  • Gräfenhan TSchroers H-JNirenberg HISeifert KA.2011. An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella. Stud Mycol 68:79–113 doi:10.3114/sim.2011.68.04
  • Greenhalgh RLevandier DAdams WMiller JDBlackwell BAMcAlees AJTaylor A.1986. Production and characterization of deoxynivalenol and other secondary metabolites of Fusarium culmorum (CMI 14764, HLX 1503). J Agr Food Chem 34:98–102 doi:10.1021/jf00067a027
  • Harrow SAFarrokhi-Nejad RPitman ARScott IAWBentley AHide CCromey MG.2010. Characterisation of New Zealand Fusarium populations using a polyphasic approach differentiates the F. avenaceum/F. acuminatum/F. tricinctum species complex in cereal and grassland systems. Fungal Biol 114:293–311 doi:10.1016/j.funbio.2010.01.005
  • Jansen Cvon Wettstein DSchäfer WKogel K-HFelk AMaier FJ.2005. Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc Natl Acad Sci U S A 102:16892–16897 doi:10.1073/pnas.0508467102
  • Kornerup AWanscher JH.1984. Methuen handbook of colour. 3rd ed. New York: Hasting House, Publishers. 252 p.
  • Laurence MHSummerell BABurgess LWLiew ECY.2011. Fusarium burgessii sp. nov. representing a novel lineage in the genus Fusarium. Fungal Divers 49:101–112 doi:10.1007/s13225-011-0093-1
  • Lee THan Y-KKim K-HYun S-HLee Y-W.2002. Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol 68:2148–2154 doi:10.1128/AEM.68.5.2148-2154.2002
  • Lysøe EHarris LJWalkowiak SSubramaniam RDivon HHRiiser ESLlorens CGabaldón TKistler HCJonkers WKolseth A-KNielsen KFThrane UFrandsen RJN.2014. The genome of the generalist plant pathogen Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism. PLoS One 9( 11): e112703 doi:10.1371/journal.pone.0112703
  • McCormick SPStanley AMStover NAAlexander NJ.2011. Trichothecenes: from simple to complex mycotoxins. Toxins 3:802–814 doi:10.3390/toxins3070802
  • Nirenberg HI.1990. Recent advance in the taxonomy of Fusarium. Stud Mycol 32:91–101.
  • O’Donnell KKistler HCTacke BKCasper HH.2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci U S A 97:7905–7910 doi:10.1073/pnas.130193297
  • O’Donnell KRooney APProctor RHBrown DWMcCormick SPWard TJFrandsen RJNLysøe ERehner SAAoki TRobert VARGCrous PWGroenewald JZKang SGeiser DM.2013. Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet Biol 52:20–31 doi:10.1016/j.fgb.2012.12.004
  • Pestka JJSmolinski AT.2010. Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol 84:663–679 doi:10.1007/s00204-010-0579-8
  • Proctor RHHohn TMMcCormick SP.1995. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 8:593–601 doi:10.1094/MPMI-8-0593
  • Sarver BAJWard TJGale LRBroz KKistler HCAoki TNicholson PCarter JO’Donnell K.2011. Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet Biol 48:1096–1107 doi:10.1016/j.fgb.2011.09.002
  • Stanke MDiekhans MBaertsch RHaussler D.2008. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24:637–644 doi:10.1093/bioinformatics/btn013
  • Stevens RR.1974. Mycology guidebook. Seattle: Univ. Washington Press. 703 p.
  • Swofford DL.2003. PAUP* 4.0b10. Phylogenetic analysis using parsimony (* and other methods). Sunderland, Massachusetts: Sinauer Associates.
  • Taylor JWJacobson DJKroken SKasuga TGeiser DMHibbett DSFischer MC.2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32 doi:10.1006/fgbi.2000.1228
  • Varga EWiesenberger GHametner CWard TJDong YSchöfbeck DMcCormick SBroz KStückler RSchuhmacher RKrska RKistler HCBerthiller FAdam G.2015. New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin. Environ Microbiol 17:2588–2600 doi:10.1111/1462-2920.12718
  • Ward TJBielawski JPKistler HCSullivan EO’Donnell K.2002. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci U S A 99:9278–9283 doi:10.1073/pnas.142307199
  • Ward TJClear RMRooney APO’Donnell KGaba DPatrick SStarkey DEGilbert JGeiser DMNowicki TW.2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol 45:473–484 doi:10.1016/j.fgb.2007.10.003
  • Wiemann PSieber CMKvon Bargen KWStudt LNiehaus E-MEspino JJHuß KMichielse CBAlbermann SWagner DBergner SVConnolly LRFischer AReuter GKleigrewe KBald TWingfield BDOphir RFreeman SHippler MSmith KMBrown DWProctor RHMünsterkötter MFreitag MHumpf H-UGüldener UTudzynski B.2013. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9( 6): e1003475 doi:10.1371/journal.ppat.1003475
  • Wollenweber HW.1931. Fusarium-Monographie. Fungi parasitici et saprophytici. Z Parasitenkd 3:269–516 doi:10.1007/BF02120198
  • Wollenweber HWSherbakoff CDReinking OA.1925. Fundamentals for taxonomic studies of Fusarium. J Agr Res 30:833–843.
  • Zhou XO’Donnell KAoki TSmith JAKasson MTCao Z-M.2016. Two novel Fusarium species that cause canker disease of prickly ash (Zanthoxylum bungeanum) in northern China form a novel clade with Fusarium torreyae. Mycologia ( in press).
  • Zwickl DJ.2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. [doctoral dissertation].Austin: Univ. Texas. 125 p.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.