890
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The Soil Moisture and Net Primary Production Affected by CO2 and Climate Change Using a Coupled Model

&
Pages 269-274 | Received 06 Dec 2013, Accepted 18 Dec 2013, Published online: 12 Aug 2015

  • Arora, V., G. Boer, J. Christian, et al., 2009: The effect of terrestrial photosynthesis down regulation on the twentieth-century carbon budget simulated with the CCCma earth system model, Climate, 22(22), 6066–6088
  • Arora, V. K., G. J. Boer, P. Friedlingstein, et al., 2013: Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth system models, J. Climate, 26, 5289–5314, doi: https://doi.org/http://dx.doi.org/10.1175/JCLI-D-12-00494.1
  • Berdanier, A. B., and J. A. Klein, 2011: Growing season length and soil moisture interactively constrain high elevation aboveground net primary production, Ecosystems, 14(6), 963–974
  • Christian, J., V. Arora, G. Boer, et al., 2010: The global carbon cycle in the Canadian Earth system model (CanESM1): Preindustrial control simulation, J. Geophys. Res., 115, G03014, doi: 10.1029/2008JG000920
  • da Costa, A. C., D. B. Metcalfe, C. E. Doughty, et al., 2013: Eco-system respiration and net primary productivity after 8–10 years of experimental through-fall reduction in an eastern Amazon forest, Plant Ecol. Divers., 7, doi: 10.1080/17550874.2013.798366
  • Drake, J. E., A. Gallet-Budynek, K. S. Hofmockel, et al., 2011: Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2, Ecol. Lett., 14(4), 349–357, doi: 10.1111/j.1461-0248.2011.01593.
  • Ettema, J., M. R. van den Broeke, E. van Meijgaard, et al., 2009: Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling, Geophys. Res. Lett., 36(12), L12501, doi: 10.1029/2009GL038110
  • Falloon, P., C. D. Jones, M. Ades, et al., 2011: Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty, Glob. Biogeochem. Cycles, 25(3), GB3010, doi: 10.1029/2010GB003938
  • Friedlingstein, P., P. Cox, R. Betts, et al., 2006: Climate-carbon cycle feedback analysis: Results from the CMIP4 model inter-comparison, J. Climate, 19(14), 3337–3353
  • Gedney, N., P. Cox, R. Betts, et al., 2006: Detection of a direct carbon dioxide effect in continental river runoff records, Nature, 439(7078), 835–838
  • Girardin, C. A. J., Y. Malhi, L. Aragao, et al., 2010: Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes, Glob. Change Biol., 16(12), 3176–3192
  • Hemming, D., R. Betts, and M. Collins, 2013: Sensitivity and uncertainty of modelled terrestrial net primary productivity to doubled CO2 and associated climate change for a relatively large perturbed physics ensemble, Agric. Forest Meteor., 170(15), 79–88
  • Huntingford, C., J. A. Lowe, B. B. B. Booth, et al., 2009: Contributions of carbon cycle uncertainty to future climate projection spread, Tellus B, 61(2), 355–360
  • Lammertsma, E. I., H. J. de Boer, S. C. Dekker, et al., 2011: Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation, PNAS, 108(10), 4035–4040
  • Lawrence, D. M., K. W. Oleson, M. G. Flanner, et al., 2012: The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities, J. Climate, 25(7), 2240–2260
  • Liepert, B. G., and M. Previdi, 2009: Do models and observations disagree on the rainfall response to global warming? J. Climate, 22(11), 3156–3166
  • Liu, Y., G. Yu, Q. Wang, et al., 2013: How temperature, precipitation and stand age control the biomass carbon density of global mature forests, Glob. Ecol Biogeogr., 28, doi: 10.1111/geb.12113
  • Luo, Y., D. Gerten, G. Le Maire, et al., 2008: Modeled interactive effects of precipitation, temperature, and CO2 on ecosystem carbon and water dynamics in different climatic zones, Glob. Change Biol, 14(9), 1986–1999
  • Metcalfe, D. B., P. Meir, L. E. Aragao, et al., 2010: Shifts in plant respiration and carbon use efficiency at a large-scale drought experiment in the eastern Amazon, New Phytol, 187(3), 608–621
  • Peng, J., L. Dan, and W. Dong, 2013a: Are there interactive effects of physiological and radiative forcing produced by increased CO2 concentration on changes of land hydrological cycle? Glob. Planet. Change, 112, doi: 10.1016/j.gloplacha.2013.11.007
  • Peng, J., W. Dong, W. Yuan, et al., 2013b: Effects of increased CO2 on land water balance from 1850 to 1989, Theor. AppL Climatol, 111(3–4), 483–495
  • Piao, S., P. Ciais, P. Friedlingstein, et al., 2009: Spatiotemporal patterns of terrestrial carbon cycle during the 20th century, Glob. Biogeochem. Cycles, 23(4), GB4026, doi: 10.1029/2008GB003339
  • Piao, S., S. Sitch, P. Ciais, et al., 2013: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends, Glob. Change Biol, 19(7), 2117–2132,doi: 10.1111/gcb.12187
  • Potter, C., S. Klooster, C. Hiatt, et al., 2011: Changes in the carbon cycle of Amazon ecosystems during the 2010 drought, Environ. Res. Lett., 6(3), 034024, doi: 10.1088/1748-9326/6/3/034024
  • Qian, H., R. Joseph, and N. Zeng, 2010: Enhanced terrestrial carbon uptake in the northern high latitudes in the 21st century from the coupled carbon cycle climate model intercomparison project model projections, Glob. Change Biol, 16(2), 641–656
  • Reddy, A. R., G. K. Rasineni, and A. S. Raghavendra, 2010: The impact of global elevated CO2 concentration on photosynthesis and plant productivity, Curr. Sci., 99(1), 46–57
  • Reichstein, M., A. Rey, A. Freibauer, et al., 2003: Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices, Glob. Biogeochem. Cycles, 17(4), 1104, doi: 10.1029/2003GB002035
  • Reyer, C., P. Lasch-Born, F. Suckow, et al., 2013: Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide, Ann. Forest Sci., 71, 211–225, doi: 10.1007/s13595-013-0306-8
  • Sheffield, J., and E. F. Wood, 2008: Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle, J. Climate, 21(3), 432–458, doi: 10.1175/2007JCLI1822.1
  • Smith, N. G., and J. S. Dukes, 2013: Plant respiration and photo-synthesis in global-scale models: Incorporating acclimation to temperature and CO2, Glob. Change Biol., 19(1), 45–63
  • Steinthorsdottir, M., F. I. Woodward, F. Surlyk, et al., 2012: Deep-time evidence of a link between elevated CO2 concentrations and perturbations in the hydrological cycle via drop in plant transpiration, Geology, 40(9), 815–818
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design, Bull. Amer. Meteor. Soc. 93(4), 485–498
  • Tiemann, L. K., and S. A. Billings, 2011: Changes in variability of soil moisture alter microbial community C and N resource use, Soil Biol. Biochem., 43(9), 1837–1847
  • Xu, X., R. A. Sherry, S. Niu, et al., 2013: Net primary productivity and rain use efficiency as affected by warming, altered precipitation, and clipping in a mixed grass prairie, Glob. Change Biol., 19,2753–2764, doi: 10.1111/gcb.12248
  • Zeng, N., R. E. Dickinson, and X. Zeng, 1996: Climatic impact of Amazon deforestation—A mechanistic model study, J. Climate, 9(4), 859–883
  • Zeng, N., H. Qian, E. Munoz, et al., 2004: How strong is carbon cycle-climate feedback under global warming? Geophys. Res. Lett., 31(20), L20203, doi: 10.1029/2004GL020904
  • Zeng, Z., S. Piao, X. Lin, et al., 2012: Global evapotranspiration over the past three decades: Estimation based on the water balance equation combined with empirical models, Environ. Res. Lett., 7(1), 014026, doi: 10.1088/1748-9326/7/1/014026
  • Zhao, M., and S. W. Running, 2010: Drought-induced reduction in global terrestrial net primary production from 2000 through 2009, Science, 329(5994), 940–943

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.