61
Views
2
CrossRef citations to date
0
Altmetric
Review

Screening assays for biomass-degrading enzymes

Pages 575-588 | Published online: 09 Apr 2014

Bibliography

  • Gomez LD, Steele-King CG, McQueen-Mason SJ. Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytologist178(3),473–485 (2008).
  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G. Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol.24(12),549–556 (2006).
  • Rass-Hansen J, Falsig H, Jørgensen B, Christensen CH. Bioethanol. Fuel or feedstock? J. Chem. Technol. Biotechnol.82(4),329–333 (2007).
  • Jorgensen H, Kristensen JB, Felby C. Enzymatic conversion of lignocellulose into fermentable sugars. challenges and opportunities. Biofuels Bioprod. Bioref.1,119–134 (2007).
  • Beguin P, Aubert JP. The biological degradation of cellulose. FEMS Microbiol Rev.13(1),25–58 (1994).
  • Teeri TT. Crystalline cellulose degradation. new insight into the function of cellobiohydrolases. TIBTECH15,160–167 (1997).
  • Poutanen K, Tenkanen M, Korte H, Puls J. Accessory enzymes involved in the hydrolysis of xylans. In: Enzymes in Biomass Conversion. Leatham GF, Himmel ME (Eds). American Chemical Society, Washington, DC, USA, 426–436 (1991).
  • Saha BC. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol.30(5),279–291 (2003).
  • Subramaniyan S, Prema P. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol.22(1),33–64 (2002).
  • Timell TE. Wood Hemicelluloses. I. Adv. Carbohydr. Chem.19,247–302 (1964).
  • Timell TE. Wood Hemicelluloses. II. Adv. Carbohydr. Chem.20,409–483 (1965).
  • Brillouet JM, Joseleau JP. Investigation of the structure of a heteroxylan from the outer pericarp (beeswing bran) of wheat kernel. Carbohydr. Res.159(1),109–126 (1987).
  • Wong DW. Feruloyl esterase: a key enzyme in biomass degradation. Appl. Biochem. Biotechnol.133(2),87–112 (2006).
  • Das NN, Das SC, Mukherjee AK. On the ester linkage between lignin and 4-O-methyl-glucurono-D-xylan in jute fiber (Corchorus capsularis). Carbohydr. Res.127,345–348 (1984).
  • Takahashi N, Koshijima T. Ester linkages between lignin and glucuronoxylan in a lignin–carbohydrate complex from beech (Fagus crenata) wood. Wood Sci. Technol.22,231–241 (1988).
  • Lorenz P, Liebeton K, Niehaus F, Eck J. Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr. Opin. Biotechnol.13(6),572–577 (2002).
  • Streit WR, Daniel R, Jaeger KE. Prospecting for biocatalysts and drugs in the genomes of non-cultured microorganisms. Curr. Opin. Biotechnol.15(4),285–290 (2004).
  • Alain K, Querellou J. Cultivating the uncultured: limits, advances and future challenges. Extremophiles13(4),583–594 (2009).
  • Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev.59(1),143–169 (1995).
  • Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol.69(12),7210–7215 (2003).
  • Park JK, Wang LX, Patel HV, Roseman S. Molecular cloning and characterization of a unique β-glucosidase from Vibrio cholerae.J.Biol. Chem.277(33),29555–29560 (2002).
  • Wagschal K, Heng C, Lee CC, Robertson GH, Orts WJ, Wong DWS. Purification and characterization of a glycoside hydrolase family 43 β-xylosidase from Geobacillus thermoleovorans IT-08. Appl. Biochem. Biotechnol.155(1–3),304–313 (2009).
  • Morris DD, Gibbs MD, Chin CW et al. Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp. Appl. Environ. Microbiol.64(5),1759–1765 (1998).
  • Morris DD, Gibbs MD, Ford M, Thomas J, Bergquist PL. Family 10 and 11 xylanase genes from Caldicellulosiruptor sp. strain Rt69B.1. Extremophiles3(2),103–111 (1999).
  • Lee CC, Wong DW, Robertson GH. Cloning and characterization of the xyn11A gene from Lentinula edodes.Protein J.24(1),21–26 (2005).
  • Bloom JD, Arnold FH. In the light of directed evolution: pathways of adaptive protein evolution. Proc. Natl Acad. Sci. USA106(Suppl. 1),9995–10000 (2009).
  • Sen S, Venkata Dasu V, Mandal B. Developments in directed evolution for improving enzyme functions. Appl. Biochem. Biotechnol.143(3),212–223 (2007).
  • Daugherty PS. Protein engineering with bacterial display. Curr. Opin. Structural Biol.17(4),474–480 (2007).
  • Mergulhao FJ, Summers DK, Monteiro GA. Recombinant protein secretion in Escherichia coli.Biotechnol. Adv.23(3),177–202 (2005).
  • Pepper LR, Yong KC, Boder ET, Shusta EV. A decade of yeast surface display technology. Where are we now? Comb. Chem. High Throughput Screen.11(2),127–134 (2008).
  • Koppal T. Setting up a high-throughput screening lab. Lab Manager4(4),50 (2009).
  • Lafferty M, Dycaico MJ. GigaMatrixTM. an ultra high-throughput tool for accessing biodiversity. J. Assoc. Lab. Automation9(4),200–208 (2004).
  • Hughes SR, Riedmuller SB, Mertens JA et al. High-throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell. Proteome Sci.4,10 (2006).
  • Bergquist PL, Hardiman EM, Ferrari BC, Winsley T. Applications of flow cytometry in environmental microbiology and biotechnology. Extremophiles13(3),389–401 (2009).
  • Yang G, Withers SG. Ultrahigh-throughput FACS-based screening for directed enzyme evolution. Chembiochem10(17),2704–2715 (2009).
  • Aharoni A, Thieme K, Chiu CP et al. High-throughput screening methodology for the directed evolution of glycosyltransferases. Nat. Methods3(8),609–614 (2006).
  • Bergquist PL, Reeves RA, Gibbs MD. Degenerate oligonucleotide gene shuffling (DOGS) and random drift mutagenesis (RNDM): two complementary techniques for enzyme evolution. Biomol. Eng.22(1–3),63–72 (2005).
  • Olsen MJ, Stephens D, Griffiths D, Daugherty P, Georgiou G, Iverson BL. Function-based isolation of novel enzymes from a large library. Nat. Biotechnol.18(10),1071–1074 (2000).
  • Lipovsek D, Antipov E, Armstrong KA et al. Selection of horseradish peroxidase variants with enhanced enantioselectivity by yeast surface display. Chem. Biol.14(10),1176–1185 (2007).
  • Bernath K, Hai M, Mastrobattista E, Griffiths AD, Magdassi S, Tawfik DS. In vitro compartmentalization by double emulsions. Sorting and gene enrichment by fluorescence activated cell sorting. Anal. Biochem.325(1),151–157 (2004).
  • Griffiths AD, Tawfik DS. Miniaturising the laboratory in emulsion droplets. Trends Biotechnol.24(9),395–402 (2006).
  • Tawfik DS, Griffiths AD. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol.16(7),652–656 (1998).
  • Mastrobattista E, Taly V, Chanudet E, Treacy P, Kelly BT, Griffiths AD. High-throughput screening of enzyme libraries: in vitro evolution of a β-galactosidase by fluorescence-activated sorting of double emulsions. Chem. Biol.12(12),1291–1300 (2005).
  • Aharoni A, Amitai G, Bernath K, Magdassi S, Tawfik DS. High-throughput screening of enzyme libraries: thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments. Chem. Biol.12(12),1281–1289 (2005).
  • Johnston D. Methodologies for assaying the hydrolysis of cellulose by cellulases. In: Handbook of Food Enzymology, Whitaker JR, Voragen AGJ, Wong DWS (Eds). Marcel Dekker, Inc., NY, USA, 761–769 (2003).
  • Wirick MG. A study of the enzymic degradation of CMC and other cellulose ethers. J. Polymer Sci.6,1965–1974 (1968).
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem.31(3),426–428 (1959).
  • Nelson N. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem.153,375–381 (1944).
  • Smogyi M. Notes on sugar determination. J. Biol. Chem.195(1),19–23 (1952).
  • Waffenschmidt S, Jaenicke L. Assay of reducing sugars in the nanomole range with 2,2´-bicinchoninate. Anal. Biochem.165(2),337–340 (1987).
  • Lever M. Colorimetric and fluorometric carbohydrate determination with p-hydroxybenzoic acid hydrazide. Biochem. Med.7(2),274–281 (1973).
  • Anthon GE, Barrett DM. Determination of reducing sugars with 3-methyl-2-benzothiazolinonehydrazone. Anal. Biochem.305(2),287–289 (2002).
  • Ten LN, Im WT, Kim MK, Kang MS, Lee ST. Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J. Microbiol. Methods56(3),375–382 (2004).
  • Wood TM. Preparation of crystalline, amorphous, and dyed cellulose substrates. Methods Enzymol.160,19–26 (1988).
  • Inoue T, Moriya S, Ohkuma M, Kudo T. Molecular cloning and characterization of a cellulase gene from a symbiotic protist of the lower termite, Coptotermes formosanus.Gene349,67–75 (2005).
  • Teather RM, Wood PJ. Use of Congo red–polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol.43(4),777–780 (1982).
  • Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol.57(5),503–507 (2008).
  • Li XL, Chen H, Ljungdahl LG. Monocentric and polycentric anaerobic fungi produce structurally related cellulases and xylanases. Appl. Environ. Microbiol.63(2),628–635 (1997).
  • Claeyssens M, Aerts G. Characterisation of cellulolytic activities in commercial Trichoderma reesei preparations: an approach using small, chromogenic substrates. Biores. Technol.39(2),143–146 (1992).
  • van Tilbeurgh H, Claeyssens M. Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates. FEBS Lett.187(2),283–288 (1985).
  • van Tilbeurgh H, Claeyssens M, de Bruyne CK. The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Lett.149(1),152–156 (1982).
  • Wolfgang DE, Wilson DB. Mechanistic studies of active site mutants of Thermomonospora fusca endocellulase E2. Biochemistry38(30),9746–9751 (1999).
  • Ivanen DR, Rongjina NL, Shishlyannikov SM et al. Novel precipitated fluorescent substrates for the screening of cellulolytic microorganisms. J. Microbiol. Methods76(3),295–300 (2009).
  • Ding SJ, Ge W, Buswell JA. Endoglucanase I from the edible straw mushroom, Volvariella volvacea. Purification, characterization, cloning and expression. Eur J. Biochem.268(22),5687–5695 (2001).
  • Hardiman E, Gibbs M, Reeves R, Bergquist P. Directed evolution of a thermophilic β-glucosidase for cellulosic bioethanol production. Appl. Biochem. Biotechnol.161(1–8),301–312 (2010).
  • Bhatia Y, Mishra S, Bisaria VS. Microbial β-glucosidases: cloning, properties, and applications. Crit. Rev. Biotechnol.22(4),375–407 (2002).
  • Esen A. β-glucosidase. In: Handbook of Food Enzymology, Whitaker JR, Voragen AGJ, Wong DWS (Eds). Marcel Dekker, Inc., NY, USA, 791–803 (2003).
  • Skory CD, Freer SN. Cloning and characterization of a gene encoding a cell-bound, extracellular β-glucosidase in the yeast Candida wickerhamii.Appl. Environ. Microbiol.61(2),518–525 (1995).
  • Saha BC, Bothast RJ. Production, purification, and characterization of a highly glucose-tolerant novel β-glucosidase from Candida peltata.Appl. Environ. Microbiol.62(9),3165–3170 (1996).
  • Zhou Y, Kajiyama S, Itoh K et al. Development of an enzyme activity screening system for β-glucosidase-displaying yeasts using calcium alginate micro-beads and flow sorting. Appl. Microbiol. Biotechnol.84(2),375–382 (2009).
  • Biely P, Markovic O, Mislovicova D. Sensitive detection of endo-1,4-β-glucanases and endo-1,4-β-xylanases in gels. Anal. Biochem.144(1),147–151 (1985).
  • Lee ST, Lee JJ. Insoluble dye substrate for screening and assay of xylan-degrading enzymes. J. Microbiol. Methods29(1),1–5 (1997).
  • Biely P. Xylanolytic enzymes. In: Handbook of Food Enzymology. Whitaker JR, Voragen AGJ, Wong DWS (Eds). Marcel Dekker, Inc., NY, USA, 879–915 (2003).
  • Ghangas GS, Hu YJ, Wilson DB. Cloning of a Thermomonospora fusca xylanase gene and its expression in Escherichia coli and Streptomyces lividans.J. Bacteriol.171(6),2963–2969 (1989).
  • Puchart V, Biely P. A simple enzymatic synthesis of 4-nitrophenyl β-1,4-D-xylobioside, a chromogenic substrate for assay and differentiation of endoxylanases. J. Biotechnol.128(3),576–586 (2007).
  • Vrsanska M, Nerinckx W, Claeyssens M, Biely P. An alternative approach for the synthesis of fluorogenic substrates of endo-β-(1->4)-xylanases and some applications. Carbohydr. Res.343(3),541–548 (2008).
  • Ge Y, Antoulinakis EG, Gee KR, Johnson I. An ultrasensitive, continuous assay for xylanase using the fluorogenic substrate 6,8-difluoro-4-methylumbelliferyl β-D-xylobioside. Anal. Biochem.362(1),63–68 (2007).
  • Xu WZ, Shima Y, Negoro S, Urabe I. Sequence and properties of β-xylosidase from Bacillus pumilus IPO. Contradiction of the previous nucleotide sequence. Eur. J. Biochem.202(3),1197–1203 (1991).
  • Wagschal K, Franqui-Espiet D, Lee CC, Robertson GH, Wong DW. Enzyme-coupled assay for β-xylosidase hydrolysis of natural substrates. Appl. Environ. Microbiol.71(9),5318–5323 (2005).
  • Chun YC, Jung KH, Lee JC, Park SH, Chung K, Yoon KIH. Molecular cloning and the nucleotide sequence of a Bacillus sp. KK-1 β-xylosidase gene. J. Microbiol. Biotechnol.8(1),28–33 (1998).
  • Tsujibo H, Takada C, Tsuji A, Kosaka M, Miyamoto K, Inamori Y. Cloning, sequencing, and expression of the gene encoding an intracellular β-D-xylosidase from Streptomyces thermoviolaceus OPC-520. Biosci. Biotechnol. Biochem.65(8),1824–1831 (2001).
  • Sewell GW, Utt EA, Hespell RB, Mackenzie KF, Ingram LO. Identification of the Butyrivibrio fibrisolvens xylosidase gene (xylB) coding region and its expression in Escherichia coli.Appl. Environ. Microbiol.55(2),306–311 (1989).
  • Grondahl M, Gatenholm P. Role of acetyl substitution in hardwood xylan. In: Polysaccharides, Dumitriu S (Eds). Marcel Dekker, NY, USA, 509–514 (2005).
  • Teleman A, Lundqvist J, Tjerneld F, Stalbrand H, Dahlman O. Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohydr. Res.329(4),807–815 (2000).
  • Biely P, MacKenzie CR, Puls J, Schneider H. Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan. Biotechnology4,731–733 (1986).
  • Khan AW, Lamb KA, Overend P. Comparison of natural hemicellulose and chemically acetylated xylan as substrates for the determination of acetyl-xylan esterase activity in Aspergilli.Enzyme Microbial Technol.12(2),127–131 (1990).
  • Hagglund E, Lindberg B, McPherson J. Dimethylsulphoxide, a solvent for hemicellulose. Acta. Chem. Scandinavica10,1160–1164 (1956).
  • Johnson KG, Fontana JD, MacKenzie CR. Measurement of acetylxylan esterase in Streptomyces.Methods Enzymol.160,551–560 (1988).
  • Dupont C, Daigneault N, Shareck F, Morosoli R, Kluepfel D. Purification and characterization of an acetyl xylan esterase produced by Streptomyces lividans.Biochem. J.319(3),881–886 (1996).
  • Lanz WW, Williams PP. Characterization of esterases produced by a ruminal bacterium identified as Butyrivibrio fibrisolvens.J. Bacteriol.113(3),1170–1176 (1973).
  • Degrassi G, Kojic M, Ljubijankic G, Venturi V. The acetyl xylan esterase of Bacillus pumilus belongs to a family of esterases with broad substrate specificity. Microbiology146(Pt 7),1585–1591 (2000).
  • Saha BC. α-L-rabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol. Adv.18(5),403–423 (2000).
  • Shallom D, Shoham Y. Microbial hemicellulases. Curr. Opin. Microbiol.6(3),219–228 (2003).
  • Numan MT, Bhosle NB. α-L-arabinofuranosidases. The potential applications in biotechnology. J. Industr. Microbiol. Biotechnol.33(4),247–260 (2006).
  • Lever M, Walmsley TA, Visser RS, Ryde SJ. Optimal conditions for 4-hydroxybenzoyl- and 2-furoylhydrazine as reagents for the determination of carbohydrates, including ketosamines. Anal. Biochem.139(1),205–211 (1984).
  • Vincent P, Shareck F, Dupont C, Morosoli R, Kluepfel D. New α-L-arabinofuranosidase produced by Streptomyces lividans: cloning and DNA sequence of the abfB gene and characterization of the enzyme. Biochem. J.322(Pt 3),845–852 (1997).
  • Gueimonde M, Noriega L, Margolles A, de los Reyes-Gavilan CG. Induction of α-L-arabinofuranosidase activity by monomeric carbohydrates in Bifidobacterium longum and ubiquity of encoding genes. Arch. Microbiol.187(2),145–153 (2007).
  • Morales P, Sendra JM, Perez-Gonzalez JA. Purification and characterization of an arabinofuranosidase from Bacillus polymyxa expressed in Bacillus subtilis.Appl. Microbiol. Biotechnol.44(1–2),112–117 (1995).
  • Margolles-Clark E, Tenkanen M, Nakari-Setala T, Penttila M. Cloning of genes encoding α-L-arabinofuranosidase and β-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae.Appl. Environ. Microbiol.62(10),3840–3846 (1996).
  • Saha BC, Bothast RJ. Enzymology of xylan degradation. In: Biopolymers. Imam SH, Greene RV, Zaidi BR (Eds). American Chemical Society, Washington, DC, USA, 167–194 (1999).
  • de Wet BJM, Prior BA. Microbial α-glucuronidases. In: Lignocellulose Biodegradation. Saha BC, Hayashi K (Eds). American Chemical Society, Washington, DC, USA. 241–254 (2004).
  • Tenkanen M, Siika-Aho M. An α-glucuronidase of Schizophyllum commune acting on polymeric xylan. J. Biotechnol.78(2),149–161 (2000).
  • Khandke KM, Vithayathil PJ, Murthy SK. Purification and characterization of an α-D-glucuronidase from a thermophilic fungus, Thermoascus aurantiacus.Arch. Biochem. Biophys.274(2),511–517 (1989).
  • Milner Y, Avigad G. A copper reagent for the determination of hexuronic acids and certain ketohexoses. Carbohydr. Res.4,359–361 (1967).
  • de Wet BJM, van Zyl WH, Prior BA. Characterization of the Aureobasidium pullulans α-glucuronidase expressed in Saccharomyces cerevisiae.Enzyme Microbial. Technol.38(5),649–656 (2006).
  • Biely P, Hirsch J, la Grange DC, van Zyl WH, Prior BA. A chromogenic substrate for a β-xylosidase-coupled assay of α-glucuronidase. Anal. Biochem.286(2),289–294 (2000).
  • Lee CC, Wagschal K, Kibblewhite-Accinelli RE, Orts WJ, Robertson GH, Wong DW. An α-glucuronidase enzyme activity assay adaptable for solid phase screening. Appl. Biochem. Biotechnol.155(1–3),314–320 (2009).
  • Studier FW. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J. Mol. Biol.219(1),37–44 (1991).
  • Hettwer D, Wang H. Protein release from Escherichia coli cells permeabilized with guanidine-HCl and Triton X100. Biotechnol. Bioeng.33(7),886–895 (1989).
  • Van der Wal FJ, Luirink J, Oudega B. Bacteriocin release proteins. Mode of action, structure, and biotechnological application. FEMS Microbiol. Rev.17(4),381–399 (1995).
  • Robbens J, Raeymaekers A, Steidler L, Fiers W, Remaut E. Production of soluble and active recombinant murine interleukin-2 in Escherichia coli: high level expression, Kil-induced release, and purification. Protein Expr. Purif.6(4),481–486 (1995).
  • Miller OJ, Bernath K, Agresti JJ et al. Directed evolution by in vitro compartmentalization. Nat. Methods3(7),561–570 (2006).
  • Fanjul-Bolado P, Gonzalez-Garcia MB, Costa-Garcia A. Flow screen-printed amperometric detection of p-nitrophenol in alkaline phosphatase-based assays. Anal. Bioanal. Chem.385(7),1202–1208 (2006).
  • Fan Z, Yuan L, Jordan DB, Wagschal K, Heng C, Braker JD. Engineering lower inhibitor affinities in β-D-xylosidase. Appl. Microbiol. Biotechnol.86(4),1099–1113 (2010).
  • Liu L, Feng Y, Duan CJ, Pang H, Tang JL, Feng JX. Isolation of a gene encoding endoglucanase activity from uncultured microorganisms in buffalo rumen. World J. Microbiol. Biotechnol.25(6),1035–1042 (2009).
  • Voutilainen SP, Boer H, Linder MB et al. Heterologous expression of Melanocarpus albomyces cellobiohydrolase Cel7B, and random mutagenesis to improve its thermostability. Enzyme Microbial. Technol.41(3),234–243 (2007).
  • Howard GT, White BA. Molecular cloning and expression of cellulase genes from Ruminococcus albus 8 in Escherichia coli bacteriophage lambda. Appl. Environ. Microbiol.54(7),1752–1755 (1988).
  • Nakazawa H, Okada K, Onodera T, Ogasawara W, Okada H, Morikawa Y. Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei.Appl.Microbiol. Biotechnol.83(4),649–657 (2009).
  • Xia T, Wang Q: Directed evolution of Streptomyces lividans xylanase B toward enhanced thermal and alkaline pH stability. World J. Microbiol. Biotechnol.25(1),93–100 (2009).
  • Voget S, Steele HL, Streit WR. Characterization of a metagenome-derived halotolerant cellulase. J. Biotechnol.126(1),26–36 (2006).
  • Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P. Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei.Biomol. Eng.22(1–3),89–94 (2005).
  • Salazar O, Basso C, Barba P, Orellana C, Asenjo JA. Improvement of the lytic properties of a β-1,3-glucanase by directed evolution. Mol. Biotechnol.33(3),211–219 (2006).
  • Michaud P, Belaich A, Courtois B, Courtois J. Cloning, sequencing and overexpression of a Sinorhizobium meliloti M5N1CS carboxymethyl-cellulase gene. Appl. Microbiol. Biotechnol.58(6),767–771 (2002).
  • Heinzelman P, Snow CD, Wu I et al. A family of thermostable fungal cellulases created by structure-guided recombination. Proc. Natl Acad. Sci. USA106(14),5610–5615 (2009).
  • Berk H, Lebbink RJ. High-throughput screening of mutant α-amylase libraries for increased activity at 129°C. Methods Mol. Biol.230,127–135 (2003).
  • Ozkose E, Akyol I, Ekinci MS. Molecular study on cloned endoglucanase gene from rumen bacterium. J. Mol. Microbiol. Biotechnol.8(2),111–116 (2004).
  • Fan Z, Wagschal K, Chen W, Montross MD, Lee CC, Yuan L. Multimeric hemicellulases facilitate biomass conversion. Appl. Environ. Microbiol.75(6),1754-1757 (2009).
  • Katayeva IA, Golovchenko NP, Chuvilskaya NA, Akimenko VK. Clostridium thermocellum β-glucosidases A and B: purification, properties, localization, and regulation of biosynthesis. Enzyme Microbial. Technol.14(5),407–412 (1992).
  • Rindfrey H, Helger R, Lang H. Kinetic glucose determination with glucose dehydrogenase. Fresenius’. J. Anal. Chem.279(2),169 (1976).
  • Yoshida S, Mackie RI, Cann IK. Biochemical and domain analyses of FSUAxe6B, a modular acetyl xylan esterase, identify a unique carbohydrate binding module in Fibrobacter succinogenes S85. J. Bacteriol.192(2),483–493 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.