75
Views
7
CrossRef citations to date
0
Altmetric
Review

System integration for producing microalgae as biofuel feedstock

, , , , &
Pages 889-910 | Published online: 09 Apr 2014

Bibliography

  • Chisti Y. Biodiesel from microalgae. Biotechnol. Adv.25(3),294–306 (2007).
  • Sheehan J, Dunahay T, Benemann J, Roessler P. A look back at the US Department of Energy’s aquatic species program: Biodiesel From Algae. National Renewable Energy Laboratory, CO, USA (1998).
  • Chisti Y. Biodiesel From Microalgae. Biotechnol. Adv. National Renewable Energy Laboratory, CO, USA 25(3),294–306 (2007).
  • Demirbas MF. Microalgae as a feedstock for biodiesel. Ener. Educ. Sci. Tech A25(1–2),31–43 (2010).
  • Moore R, Kingsley RS, Vodopich D, Clark DW. Botany. William C Brown Pub. IA, USA (1995).
  • Huntley M, Redalje D. CO2 mitigation and renewable oil from photosynthetic microbes. A new appraisal. Mitigation and Adaptation Strategies for Global Change12(4),573–608 (2007).
  • Tamiya H. Mass culture of algae. Annu. Rev. Plant Physiol.8(1),309–334 (2003).
  • Fernández FGA, Camacho FG, Pérez JAS, Sevilla JMF, Grima EM. Modeling of biomass productivity in tubular photobioreactors for microalgal cultures. Effects of dilution rate, tube diameter, and solar irradiance. Biotechnol. Bioeng.58(6),605–616 (1998).
  • David OH, Fernández FGA, Guerrero EC, Rao KK, Grima EM. Outdoor helical tubular photobioreactors for microalgal production. Modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol. Bioeng.82(1),62–73 (2003).
  • Laws EA, Taguchi S, Hirata J, Pang L. High algal production rates achieved in a shallow outdoor flume. Biotechnol. Bioeng.28(2),191–197 (1986).
  • Beer LL, Boyd ES, Peters JW, Posewitz MC. Engineering algae for biohydrogen and biofuel production. Curr. Opin. Biotechnol.20(3),264–271 (2009).
  • Gouveia L, Marques Ae, da Silva Tl, Reis A. Neochloris oleabundans utex #1185. A suitable renewable lipid source for biofuel production. J. Ind. Microbiol. Biotechnol.36(6),821–826 (2009).
  • Greenwell HC, Laurens LM, Shields RJ, Lovitt RW, Flynn KJ. Placing microalgae on the biofuels priority list. A review of the technological challenges. J. R. Soc. Interface7(46),703–726 (2010).
  • Pienkos PT, Darzins A. The promise and challenges of microalgal-derived biofuels. Biofuel Bioprod. Bior.3(4),431–440 (2009).
  • Radakovits R, Jinkerson RE, Darzins AL, Posewitz MC. Biofuels from eukaryotic microalgae. Eukaryotic Cell DOI:10.1128/EC.00364–00309 (2010) (Epub ahead of print).
  • Liu B, Zhao Z. Biodiesel production by direct methanolysis of oleaginous microbial biomass. J. Chem. Technol. Biotechnol.82(8),775–780 (2007).
  • Chisti Y. Biodiesel from microalgae. Biotechnol. Adv.25,294–306 (2007).
  • Perlack RD, Stockes, BJ, Erbach DC. Biomass as Feedstocks for a Bioenergy and Bioproducts Industry. The Technical Feasibility of a Billion-Ton Annual Supply. Oak Ridge National Laboratory, TN, USA (2005).
  • Nelson LD, Cox MM. Principles of Biochemistry (4th Edition). WH Freeman and Company, NY, USA 119 (2005).
  • Richmond A. Handbook of Microalgal Culture. Blackwell Publishing, Oxford, UK (2004).
  • Griffiths Mj, Harrison STL. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol.21(5),493–507 (2009).
  • Chen G-Q, Chen F. Growing phototrophic cells without light. Biotechnol. Lett.28(9),607–616 (2006).
  • Norbert K, Jörg T. Mixotrophic algae constrain the loss of organic carbon by exudation. J. Phycol.45(4),807–811 (2009).
  • Troost TA, Kooi BW, Kooijman SA. When do mixotrophs specialize? Adaptive dynamics theory applied to a dynamic energy budget model. Math. Biosci.193(2),159–182 (2005).
  • Rusch KA, Christensen MJ. Description and operation of a hydraulically integrated serial turbidostat algal reactor (histar). J. Shellfish Res.17(1),338 (1998).
  • Rusch KA, Malone RF. Microalgal production using a hydraulically integrated serial turbidostat algal reactor (histar). A conceptual model. Aquac. Eng.18(4),251–264 (1998).
  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N. Biofuels from microalgae. Biotechnol. Prog.24(4),815–820. (2008).
  • Borowitzka MA. Commercial production of microalgae. Ponds, tanks, tubes and fermenters. J. Biotechnol.70(1–3),313–321 (1999).
  • Olaizola M. Commercial development of microalgal biotechnology. From the test tube to the marketplace. Biomol. Eng.20(4–6),459–466 (2003).
  • Samejima H, Myers J. Heterotrophic growth of chlorella pyrenoidosa. J. Gen. Microbiol.18,107–117 (1958).
  • Chen F, Zhang Y. High cell density mixotrophic culture of spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb. Technol.20(3),221–224 (1997).
  • Garcia MCC, Sevilla JMF, Fernandez FGA, Grima EM, Camacho FG. Mixotrophic growth of phaeodactylum tricornutum on glycerol. Growth rate and fatty acid profile. J. Appl. Phycol.12(3–5),239–248 (2000).
  • Lewin RA. Physiology and Biochemistry of Algae. Academic Press, NY, USA (1962).
  • Zaslavakaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE. Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science292(5524),2073–2075 (2001).
  • Courchesne NMD, A Parisien, Wang B, Lan CQ. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J. Biotechnol.141,31–41 (2009).
  • Grossmann G, Opekarova M, Novakova L, Stolz J, Tanner W. Lipid raft-based membrane compartmentation of a plant transport protein expressed in saccharomyces cerevisiae. Eukaryotic Cell5(6),945–953 (2006).
  • Kawata M, Nanba M, Matsukawa R, Chihara M, Karube I. Isolation and characterization of a green alga Neochloris sp. for CO2 fixation. Stud. Surf. Sci. Catal.114 (1998).
  • Tornabene TG, Holzer G, Lien S, Burris N. Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb. Tech.5(6),435–440 (1983).
  • Yamaberi K, Takagi M, Yoshida T. Nitrogen depletion for intracellular triglyceride accumulation to enhance liquefaction yield of marine microalgal cells into a fuel oil. J. Mar. Biotechnol.6(1),44–48 (1998).
  • Li Q, Du W, Liu D. Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol.80(5),749–756 (2008).
  • Khozin-Goldberg I, Cohen Z. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte monodus subterraneus. Phytochem. Rev.67(7),696–701 (2006).
  • Liu ZY, Wang GC, Zhou BC. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technol.99(11),4717–4722 (2008).
  • Takagi M, Karseno, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae dunaliella cells. J. Biosci. Bioeng.101(3),223–226 (2006).
  • Hu Q, Sommerfeld M, Jarvis E et al. Microalgal triacylglycerols as feedstocks for biofuel production. Perspectives and advances. Plant J.54(4),621–639 (2008).
  • Kong QX, Li L, Martinez B, Chen P, Ruan R. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl. Biochem. Biotechnol.160(1),9–18 (2010).
  • Mandal S, Mallick N. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol.84(2),281–291 (2009).
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications. A review. Renew. Sust. Energ. Rev.14(1),217–232 (2010).
  • Ahlgren G, Hyenstrand P. Nitrogen limitation effects of different nitrogen sources on nutritional quality of two freshwater organisms, Scenedesmus quadricauda (chlorophyceae) and Synechococcus sp. (cyanophyceae). J. Phycol.39(5),906–917 (2003).
  • Cohen Z, Khozin-Goldberg I, Adlerstein D, Bigogno C. The role of triacylglycerol as a reservoir of polyunsaturated fatty acids for the rapid production of chloroplastic lipids in certain microalgae. Biochem. Soc. Trans.28(6),740–743 (2000).
  • Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak Mn. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga parietochloris incisa. J. Appl. Phycol.20(3),245–251 (2008).
  • GrangerLM, Perlot P, Goma G, Pareilleux A. Effect of various nutrient limitations on fatty-acid production by Rhodotorula glutinis. Appl. Microbiol. Biot.38(6),784–789 (1993).
  • Hassan M, Blanc PJ, Granger LM, Pareilleux A, Goma G. Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochem.31(4),355–361 (1996).
  • Varkonyi Z, Masamoto K, Debreczeny M et al. Low-temperature-induced accumulation of xanthophylls and its structural consequences in the photosynthetic membranes of the cyanobacterium Cylindrospermopsis raciborskii. An FTIR spectroscopic study. Proc. Natl Acad. Sci. USA99(4),2410–2415 (2002).
  • Zsiros O, Varkonyi Z, Kovacs A, Farkas T, Gombos Z, Garab G. Induction of polyunsaturated fatty-acid synthesis enhances tolerance of a cyanobacterium, Cylindrospermopsis raciborskii, to low-temperature photoinhibition. Indian J. Biochem. Bio.37(6),470–476 (2000).
  • Lu Y, Chi X, Li Z et al. Isolation and characterization of a stress-dependent plastidial delta12 fatty acid desaturase from the antarctic microalga Chlorella vulgaris nj-7. Lipids45(2),179–187 (2010).
  • Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl. Microbiol. Biot.58(3),308–312 (2002).
  • Takagi M, Karseno, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae dunaliella cells. J. Biosci. Bioeng.101(3),223–226 (2006).
  • Raghukumar S. Thraustochytrid marine protists. Production of PUFAS and other emerging technologies. Mar. Biotechnol.10(6),631–640 (2008).
  • Wang Zt, Ullrich N, Joo S, Waffenschmidt S, Goodenough U. Algal lipid bodies. Stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryotic Cell8(12),1856–1868 (2009).
  • Livne A, Sukenik A. Lipid-synthesis and abundance of acetyl CoA carboxylase in Isochrysis galbana (prymnesiophyceae) following nitrogen starvation. Plant Cell Physiol.33(8),1175–1181 (1992).
  • Iskandarov U, Khozin-Goldberg I, Ofir R, Cohen Z. Cloning and characterization of the 6 polyunsaturated fatty acid elongase from the green microalga Parietochloris incisa. Lipids44(6),545–554 (2009).
  • Grossman A. Acclimation of Chlamydomonas reinhardtii to its nutrient environment. Protist151(3),201–224 (2000).
  • Ratledge C. Regulation of lipid accumulation in oleaginous micro-organisms. Biochem. Soc. Trans.30(6),1047–1050 (2002).
  • Pruvost J, Van Vooren G, Cogne G, Legrand J. Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour. Technol.100(23),5988–5995 (2009).
  • Rodolfi L, Chini Zittelli G, Bassi N et al. Microalgae for oil. Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng.102(1),100–112 (2009).
  • Mcginnis KM, Dempster TA, Sommerfeld MR. Characterization of the growth and lipid content of the diatom Chaetoceros muelleri. J. Appl. Phycol.9(1),19–24 (1997).
  • Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie86(11),807–815 (2004).
  • Harwood JL, Guschina IA. The versatility of algae and their lipid metabolism. Biochimie91(6),679–684 (2009).
  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell9(4),486–501 (2010).
  • Dunahay TG, Jarvis EE, Dais SS, Roessler PG. Manipulation of microalgal lipid production using genetic engineering. Appl. Biochem. Biotechnol.57–58,223–231 (1996).
  • Verwoert II, van der Linden KH, Walsh MC, Nijkamp HJ, Stuitje AR. Modification of Brassica napus seed oil by expression of the Escherichia coli fabH gene, encoding 3-ketoacyl-acyl carrier protein synthase III. Plant Mol. Biol.27(5),875–886 (1995).
  • Dehesh K, Tai H, Edwards P, Byrne J, Jaworski JG. Overexpression of 3-ketoacyl-acyl-carrier protein synthase IIIs in plants reduces the rate of lipid synthesis. Plant Physiol. Biochem.125(2),1103–1114 (2001).
  • Zou J, Katavic V, Giblin EM et al. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell9(6),909–923 (1997).
  • Bouvier-Nave P, Benveniste P, Oelkers P, Sturley SL, Schaller H. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA: diacylglycerol acyltransferase. Eur. J. Biochem.267(1),85–96 (2000).
  • Jako C, Kumar A, Wei Y et al. Seed-specific over-expression of an arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol.126(2),861–874 (2001).
  • Galili G, Hofgen R. Metabolic engineering of fatty acid biosynthesis in plants. Metabol. Eng.4(1),12–21 (2002).
  • Lin H, Castro NM, Bennett GN, San KY. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation. A potential tool in metabolic engineering. Appl. Microbiol. Biot.71(6),870–874 (2006).
  • Wynn JP, Hamid ABA, Ratledge C. The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology145(8),1911–1917 (1999).
  • Zhang Y, Adams IP, Ratledge C. Malic enzyme. The controlling activity for lipid production? Overexpression of malic enzyme in mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology153(7),2013–2025 (2007).
  • Rangasamy D, Ratledge C. Genetic enhancement of fatty acid synthesis by targeting rat liver ATP: citrate lyase into plastids of tobacco. Plant Physiol.122(4),1231–1238 (2000).
  • Li Y, Han D, Hu G et al.Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab. Eng.12(4),387–391 (2010).
  • Capell T, Christou P. Progress in plant metabolic engineering. Curr. Opin. Biotech.15(2),148–154 (2004).
  • Grotewold E. Transcription factors forpredictive plantmetabolic engineering. Are we there yet? Curr. Opin. Biotech.19(2),138–144 (2008).
  • Santos CNS, Stephanopoulos G. Combinatorial engineering of microbes for optimizing cellular phenotype. Curr. Opin. Chem. Biol.12(2),168–176 (2008).
  • Riano-Pachon DM, Correa LGG, Trejos-Espinosa R, Mueller-Roeber B. Green transcription factors. A Chlamydomonas overview. Genetics179(1),31–39 (2008).
  • Li Y, Han D, Hu G, Sommerfeld M, Hu Q. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng107(2),258–268 (2010).
  • Shimizu Y. Microalgal metabolites. A new perspective. Annu. Rev. Microbiol.50(1),431–465 (1996).
  • Molina Grima E, Belarbi EH, Acien Fernandez FG, Robles Medina A, Chisti Y. Recovery of microalgal biomass and metabolites. Process options and economics. Biotechnol. Adv.20(7–8),491–515 (2003).
  • Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl. Microbial. Biotechnol.65(6),635–648 (2004).
  • Cardozo KHM, Guaratini T, Barros MP et al. Metabolites from algae with economical impact. Comp. Biochem. Physiol. C146(1–2),60–78 (2007).
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng.101(2),87–96 (2006).
  • Certik M, Shimizu S. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J. Biosci. Bioeng.87(1),1–14 (1999).
  • Gill I, Valivety R. Polyunsaturated fatty acids, part 1. Occurrence, biological activities and applications. Trends Biotechnol.15(10),401–409 (1997).
  • Cohen Z, Norman HA, Heimer YM. Microalgae as a source of omega 3 fatty acids. World Rev. Nutr. Diet.77,1 (1995).
  • Behrens PW, Kyle DJ. Microalgae as a source of fatty acids. J. Food Lipids3(4),259–272 (2007).
  • Chini Zittelli G, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR. Production of eicosapentaenoic acid by Nannochloropsis sp. Cultures in outdoor tubular photobioreactors. J. Biotechnol.70(1–3),299–312 (1999).
  • Medina Ar, Grima EM, Giménez AG, González MJ. Downstream processing of algal polyunsaturated fatty acids. Biotechnol. Adv.16(3),517–580 (1998).
  • Wen ZY, Chen F. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol. Adv.21(4),273–294 (2003).
  • Del Campo JA, Garciá-González M, Guerrero MG. Outdoor cultivation of microalgae for carotenoid production. Current state and perspectives. Appl. Microbiol. Biotechnol.74(6),1163–1174 (2007).
  • Cysewski GR, Lorenz RT. Industrial production of microalgal cell-mass and secondary products – major industrial species: Arthrospira (Spirulina) platensis. In: Handbook of Microalgal Culture. Richmond A (Ed.) Blackwell, Oxford, UK 281–288 (2004).
  • Belay A, Ota Y, Miyakawa K, Shimamatsu H. Current knowledge on potential health benefits of spirulina. J. Appl. Phycol.5(2),235–241 (1993).
  • Church FC, Meade JB, Treanor RE, Whinna HC. Antithrombin activity of fucoidan. The interaction of fucoidan with heparin cofactor II, antithrombin III, and thrombin. J. Biol. Chem.264(6),3618 (1989).
  • Matou S, Helley D, Chabut D, Bros A, Fischer AM. Effect of fucoidan on fibroblast growth factor-2-induced angiogenesis in vitro. Thromb. Res.106,213–221 (2002).
  • Kjelleberg S, Steinberg P. Surface warfare in the sea. Mar. Biol.133,727–736 (1999).
  • Witvrouw M, De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen. Pharmacol.29(4),497–511 (1997).
  • Witvrouw M, Desmyter J, De Clercq E. Antiviral portrait series. 4. Polysulfates as inhibitors of HIV and other enveloped viruses. Antivir. Chem. Chemother.5(6),345–359 (1994).
  • Damonte E, Neyts J, Pujol Ca et al. Antiviral activity of a sulphated polysaccharide from the red seaweed Nothogenia fastigiata. Biochem. Pharmacol.47(12),2187–2192 (1994).
  • Bruhn T, Jan D, Edmundo NK, Erik D, Hans-Dietrich B, Laszlo B. Antiviral and anticoagulant activity of polysaccharides from marine brown algae. Biochem. Aspects Margarine Pharmacol.14,187–208 (1996).
  • Hosoya M, Balzarini J, Shigeta S, De Clercq E. Differential inhibitory effects of sulfated polysaccharides and polymers on the replication of various myxoviruses and retroviruses, depending on the composition of the target amino acid sequences of the viral envelope glycoproteins. Antimicrob. Agents Chemother.35(12),2515 (1991).
  • Nishino T, Nagumo T. The sulfate-content dependence of the anticoagulant activity of a fucan sulfate from the brown seaweed ecklonia kurome. Carbohydr. Res.214(1),193 (1991).
  • Nishino T, Nagumo T. Anticoagulant and antithrombin activities of oversulfated fucans. Carbohydr. Res.229(2),355–362 (1992).
  • Hsu HY, Jeyashoke N, Yeh CH, Song YJ, Hua KF, Chao LK. Immunostimulatory bioactivity of algal polysaccharides from Chlorella pyrenoidosa activates macrophages via Toll-like receptor 4. J. Agricultural Food Chem.58(2),927–936 (2010).
  • Guzman S, Gato A, Lamela M, Freire-Garabal M, Calleja JM. Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res.17(6),665–670 (2003).
  • Awad Ne. Biologically active steroid from the green alga Ulva lactuca. Phytother. Res.14(8),641–643 (2000).
  • Grunewald N, Groth I, Alban S. Evaluation of seasonal variations of the structure and anti-inflammatory activity of sulfated polysaccharides extracted from the red alga Delesseria sanguinea (hudson) lamouroux (Ceramiales, Delesseriaceae). Biomacromolecules10(5),1155–1162 (2009).
  • Miranda MS, Sato S, Mancini-Filho J. Antioxidant activity of the microalga Chlorella vulgaris cultured on special conditions. Bollettino Chimico Farmaceutico140(3),165–168 (2001).
  • Shick JM, Dunlap WC. Mycosporine-like amino acids and related gadusols. Biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu. Rev. Physiol.64(1),223–262 (2002).
  • Papapetropoulos S. Is there a role for naturally occurring cyanobacterial toxins in neurodegeneration? The β-N-methylamino-L-alanine (BMAA) paradigm. Neurochem. Int.50(7–8),998–1003 (2007).
  • Banack SA, Johnson HE, Cheng R, Cox PA. Production of the neurotoxin BMAA by a marine cyanobacterium. Mar. Drugs5(4),180–196 (2007).
  • Cox PA, Banack SA, Murch SJ et al. Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid. Proc. Natl Acad. Sci. USA102(14),5074–5078 (2005).
  • Esterhuizen M, Downing TG. β-N-methylamino-L-alanine (BMAA) in novel South African cyanobacterial isolates. Ecotoxicol. Environ. Saf.71(2),309–313 (2008).
  • Metcalf JS, Banack SA, Lindsay J, Morrison LF, Cox PA, Codd GA. Co-occurrence of β-N-methylamino-L-alanine, a neurotoxic amino acid with other cyanobacterial toxins in british waterbodies, 1990–2004. Environ. Microbiol.10(3),702–708 (2008).
  • Johnson HE, King SR, Banack SA, Webster C, Callanaupa WJ, Cox PA. Cyanobacteria (Nostoc commune) used as a dietary item in the peruvian highlands produce the neurotoxic amino acid BMAA. J. Ethnopharmacol.118(1),159–165 (2008).
  • Vega A, Bell EA, Nunn PB. The preparation of L- and D-[α]-amino-[β]-methylaminopropionic acids and the identification of the compound isolated from cycas circinalis as the L-isomer. Phytochemistry7(10),1885–1887 (1968).
  • Kubo T, Kato N, Hosoya K, Kaya K. Effective determination method for a cyanobacterial neurotoxin, β-N-methylamino-L-alanine. Toxicon51(7),1264–1268 (2008).
  • Scott PM, Niedzwiadek B, Rawn DFK, Lau BPY. Liquid chromatographic determination of the cyanobacterial toxin β-N-methylamino-L-alanine in algae food supplements, freshwater fish, and bottled water. J. Food Prot.72(8),1769–1773 (2009).
  • Nakamura H, Kobayashi J, Hirata Y. Separation of mycosporine-like amino acids in marine organisms using reversed-phase high-performance liquid chromatography. J. Chromatogr. A250,113–118 (1982).
  • Karentz D. Marine Chemical Ecology. McClintock Jb, Baker Bj (Eds). CRC Press, FL, USA 481–520 (2001).
  • Karsten U, Sawall T, Hanelt D et al. An inventory of UV-absorbing mycosporine-like amino acids in macroalgae from polar to warm-temperate regions. Botanica Marina41(1–6),443–454 (1998).
  • Hirata Y, Uemura D, Ueda K, Takano S. Several compounds from Palythoa tuberculosa (coelenterata). Pure Appl. Chem.51,1875–1883 (1979).
  • Castenholz R, Garcia-Pichel F. Cyanobacterial responses to UV-radiation. The Ecology of Cyanobacteria591–611 (2000).
  • Xiong F, Kopecky J, Nedbal L. The occurrence of UV-b absorbing mycosporine-like amino acids in freshwater and terrestrial microalgae (chlorophyta). Aquatic Botany63(1),37–49 (1999).
  • Bandaranayake WM. Mycosporines: are they nature’s sunscreens? Nat. Prod. Rep.15(2),159–172 (1998).
  • Dunlap WC, Chalker BE, Bandaranayake WM, Wu Won JJ. Nature’s sunscreen from the Great Barrier Reef, Austalia. Int. J. Cosmet. Sci.20,41–51 (1998).
  • Je JY, Park PJ, Kim SK. Antioxidant activity of a peptide isolated from alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Res. Int.38(1),45–50 (2005).
  • Rajapakse N, Mendis E, Byun HG, Kim SK. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J. Nutr. Biochem.16(9),562–569 (2005).
  • Qian ZJ, Jung WK, Kim SK. Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, rana catesbeiana shaw. Bioresour. Technol.99(6),1690–1698 (2008).
  • Sheih IC, Wu TK, Fang TJ. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresour. Technol.100(13),3419–3425 (2009).
  • Sheih IC, Fang TJ, Wu TK, Lin PH. Anticancer and antioxidant activities of the peptide fraction from algae protein waste. J. Agric. Food Chem.58(2),1202–1207 (2010).
  • Rice-Evans C, Miller N, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci.2(4),152–159 (1997).
  • Nardini M, D’aquino M, Tomassi G, Gentili V, Di Felice M, Scaccini C. Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radic. Biol. Med.19(5),541–552 (1995).
  • Roche M, Dufour C, Mora N, Dangles O. Antioxidant activity of olive phenols: mechanistic investigation and characterization of oxidation products by mass spectrometry. Org. Biomol. Chem.3(3),423–430 (2005).
  • Son S, Lewis BA. Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure-activity relationship. J. Agric. Food Chem.50(3),468–472 (2002).
  • Silva AMS, Santos CMM, Cavaleiro JAS, Tavares HR, Borges F, Silva FAM. Magnetic Resonance in Food Science: A View to the Future. Special Publication Royal Society of Chemistry, Cambridge, UK 262 (2001).
  • Klejdus B, Kopeck J, Benesov L, Vacek J. Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. J. Chromatogr. A1216(5),763–771 (2009).
  • Onofrejová L, Vasíková J, Klejdus B et al. Bioactive phenols in algae: the application of pressurized-liquid and solid-phase extraction techniques. J. Pharm. Biomed. Anal.51(2),464–470 (2010).
  • Kobayashi M. Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis. Biotechnol. Bioprocess Eng.8(6),322–330 (2003).
  • Dingman SL. Physical Hydrology (2nd Edition). Prentice Hall, Upper Saddle River, NJ, USA (2002).
  • Grobbelaar JU. Mineral nutrition. In: Handbook of Microalgal Culture Biotechnology and Applied Phycology. Richmond A (Ed.) Blackwell Publishing, Oxford, UK 97–115 (2004).
  • Kebede-Westhead E, Pizarro C, Mulbry WW. Treatment of swine manure effluent using freshwater algae: production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates. J. Appl. Phycol.18(1),41–46 (2006).
  • Zhang T, Bowers KE, Harrison HJ, Chen S. Releasing phosphorus from calcium for struvite fertilizer production from anaerobically digested dairy effluent. Water Environ. Res.82(1),34–42 (2010).
  • Iglesias-Rodriguez MD, Halloran PR, Rickaby REM et al. Phytoplankton calcification in a high-CO2 world. Science320(5874),336–340 (2008).
  • Brune DE, Lundquist TJ, Benemann JR. Microalgal biomass for greenhouse gas reductions: potential for replacement of fossil fuels and animal feeds. J. Environ. Eng.135(11),1136–1144 (2009).
  • Kadam KL. Power plant flue gas as a source of CO2 for microalgae cultivation. Economic impact of different process options. Energy Conversion Management38,S505-S510 (1997).
  • Plasynski SI, Litynski JT, Mcilvried HG, Srivastava RD. Progress and new developments in carbon capture and storage. Crit. Rev. Plant Sci.28(3),123–138 (2009).
  • Price GD, Badger MR, Woodger FJ, Long BM. Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J. Exp. Botany59(7),1441–1461 (2008).
  • Yamano T, Fukuzawa H. Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses. J. Basic Microbiol.49(1),42–51 (2009).
  • Weisman JC, Goebel RP. Design and Analysis of Microalgal Open Pond Systems for the Purpose of Producing Fuels. Solar Energy Research Institute, CO, USA (1987).
  • Favre N, Christ ML, Pierre AC. Biocatalytic capture of CO2 with carbonic anhydrase and its transformation to solid carbonate. J. Mol. Catal. B Enzym.60(3–4),163–170 (2009).
  • Benemann JR. Systems and Economic Analysis of Microalgae Ponds for Conversion of CO2 to Biomass. US Department of Energy, USA (1996).
  • Hu Q, Guterman H, Richmond A. Physiological characteristics of Spirulina platensis (cyanobacteria) cultured at ultrahigh cell densities. J. Phycol.32,1066–1073 (1996).
  • De Swaaf ME, Sijtsma L, Pronk JT. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol. Bioeng.81(6),666–672 (2003).
  • Meesters P, Huijberts Gnm, Eggink G. High cell density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl. Microbiol. Biotechnol.45(5),575–579 (1996).
  • Johnson MB, Wen ZY. Development of an attached microalgal growth system for biofuel production. Appl. Microbiol. Biotechnol.85(3),525–534 (2010).
  • Liu XY, Curtiss R. Nickel-inducible lysis system in Synechocystis sp. pcc 6803. Proc. Natl Acad. Sci. USA106(51),21550–21554 (2009).
  • Ramachandra TV, Mahapatra DM, Karthick B, Gordon R. Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Ind. Eng. Chem. Res.48(19),8769–8788 (2009).
  • Liu X, Brune D, Vermaas W, Curtiss R. Production and secretion of fatty acids in genetically engineered cyanobacteria. Proc. Natl Acad. Sci. USA DOI: 10.1073/pnas.1001946107 (2010) (Epub ahead of print).
  • McHugh DJ. A Guide to the Seaweed Industry. FAO Fisheries Technical Paper 441. Food & Agricultural Organization of the United Nations, 1–105 (2003).

▪ Website

▪ Patents

  • Martek Biosciences Boulder Corporation: US6607900 (2003).
  • Oyler Jr: US20080160593 (2008).
  • Washington State University Research Foundation: WO/2010/014797 (2010).
  • Anping J, Zhang T, Frear C, Chen S. US20090206028 (2009).
  • Martek Biosciences Corporation: US6607900 (2003).
  • Martek Biosciences Corporation: US6750048 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.