38
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Xylanase and cellulase production by Acidothermus cellulolyticus grown on switchgrass in solid-state fermentation

, , &
Pages 21-32 | Published online: 09 Apr 2014

Bibliography

  • Maréchal J, Clement B, Nalin R et al. A recA gene analysis confirms the closer proximity of Frankia to Acidothermus. Int. J. Syst. Evol. Microbiol.50,781–785 (2000).
  • Mohagheghi A, Grohmann K, Himmel M, Leighton L, Updegraff DM. Isolation and characterization of Acidothermus celluloyticus gen. nov., sp. nov., a new genus of thermophilic, acidophilic, cellulolytic bacteria. Int. J. Syst. Bacteriol.36,435–443 (1986).
  • Sakon J, Adney WS, Himmel ME, Thomas SR, Karplus PA. Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochem.35(33),10648–10660 (1996).
  • Couto SR, Sanromán MÁ. Application of solid-state fermentation to food industry – a review. J. Food Eng.76(3),291–302 (2006).
  • Pandey A. Solid-state fermentation. Biochem. Eng. J.13,81–84 (2003).
  • Pandey A, Selvakumar P, Soccol CR, Nigam P. Solid state fermentation for the production of industrial enzymes. Curr. Sci.77,149–162 (1999).
  • Viniegra-González G, Favela-Torres E, Aguilar CN et al. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J.13,157–167 (2003).
  • Castilho LR, Alves TLM, Medronho RA. Recovery of pectolytic enzymes produced by solid state culture of Aspergillus niger. Process. Biochem.34,181–186 (1999).
  • Castilho LR, Polato CMS, Baruque EA, Sant’Anna Jr GL, Freire DMG. Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations. Biochem. Eng. J.4,239–247 (2000).
  • Sik S, Unyayar A. Phanerochaete chrysosporium and Funalia trogii for the degradation of cotton stalk and their laccase, peroxidase, ligninase and cellulase enzyme activities under semi-solid state conditions. Turkish J. Biol.22,287–298 (1998).
  • Ferrza A, Cordova AM, Machuca A. Wood biodegradation and enzyme production by Ceriporiopsis subvermispora during solidstate fermentation of Eucalyptus grandis. Enzyme Microb. Tech.32,59–65 (2003).
  • Archana A, Satyanarayana T. Xylanase production by thermophilic Bacillus licheniformis A99 in solid-state fermentation. Enzyme Microb. Tech.21,12–17 (1997).
  • Aguilar CN, Gutiérrez-Sánchez G, Rado-Barragán PA, Rodríguez-Herrera R, Martínez-Hernandez JL, Contreras-Esquivel JC. Perspectives of solid state fermentation for production of food enzymes. Am. J. Biochem. Biotech.4(4),354–366 (2008).
  • VanderGheynst JS, Rezaei F, Dooley TM, Berry AM. Switchgrass leaching requirements for solid-state fermentation by Acidothermus cellulolyticus. Biotechnol. Progr.26,622–626 (2010).
  • Joh LD, Rezaei F, Borabote RD et al. Effects of phenolic monomers on growth of Acidothermus cellulolyticus.Biotechnol. Progr. DOI: 10.1002/btpr.525 (2010) (Epub ahead of print).
  • Keshwani DR, Cheng JJ. Switchgrass for bioethanol and other value-added applications: a review. Bioresour. Technol.100(4),1515–1523 (2009).
  • Reddy AP, Jenkins BM, VanderGheynst JS. The critical moisture range for rapid microbial decomposition of rice straw during storage. Trans. ASABE52(2),673–677 (2009).
  • Gabrielsen BC, Vogel KP, Anderson BE, Ward JK. Alkali-labile cell-wall phenolics and forage quality in switchgrasses selected for differing digestibility. Crop Sci.30(6),1313–1320 (1990).
  • Rezaei F, Joh LD, Kashima H, Reddy AP, VanderGheynst JS. Selection of conditions for cellulase and xylanase extraction from switchgrass colonized by Acidothermus cellulolyticus. Appl. Biochem. Biotech. (2010) (In press).
  • Xiao Z, Storms R, Tsang A. Microplate-based carboxymethylcellulose assay for endoglucanase activity. Anal. Biochem.342,176–178 (2005).
  • Bailey MJ, Biely P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol.23,257–270 (1992).
  • Arimboor R, Kumar KS, Arumughan C. Simultaneous estimation of phenolic acids in sea buckthorn (Hippophae rhamnoides) using RP-HPLC with DAD. J. Pharm. Biomed. Anal.47(1),31–38 (2008).
  • Uchino F, Doi S. Acido-thermophilic bacteria from thermal waters. Agric. Biol. Chem.31(7),817–822 (1967).
  • Dharmagadda VSS, Nokes SE, Strobel HJ, Flythe MD. Investigation of the metabolic inhibition observed in solid-substrate cultivation of Clostridium thermocellum on cellulose. Bioresour. Technol.101(15),6039–6044 (2010).
  • Barabote RD, Xie G, Leu DH et al. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Res.19(6),1033–1043 (2009).
  • Pothiraj C, Balaji P, Eyini M. Enhanced production of cellulases by various fungal cultures in solid state fermentation of cassava waste. Afr. J. Biotech.5(20),1882–1885 (2006).
  • Sun H, Ge X, Hao Z, Peng M. Cellulase production by Trichoderma sp. on apple pomace under solid state fermentation. Afr. J. Biotech.9(2),163–166 (2010).
  • Park YS, Kang SW, Lee JS, Hong SI, Kim SW. Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl. Microbiol. Biotechnol.58,761–766 (2002).
  • Sakon J, Adney WS, Himmel ME, Thomas SR, Karplus PA. Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotriose. Biochem.35,10648–10660 (1996).
  • Barabote RD, Parales JV, Guo Y-Y, Labavitch JM, Parales RE, Berry AM. A thermostable endo-xylanase (Xyn10A) from Acidothermus cellulolyticus 11B. Appl. Environ. Microbiol.76(21),7363–7366 (2010).
  • Martin SA, Akin DE. Effect of phenolic monomers on the growth and β-glucosidase activity of Bacteroides ruminicola and on the carboxymethylcellulase, β-glucosidase, and xylanase activities of Bacteroides succinogenes. Appl. Environ. Microbiol.54(12),3019–3022 (1988).
  • Philippidis GP, Smith TK, Wyman CE. Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnol. Bioeng.41,846–853 (1993).

▪ Patents

  • The reagents of the University of California: US20100184161 (2010).
  • Midwest Research Institute: US5275944 (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.