103
Views
2
CrossRef citations to date
0
Altmetric
Review

‘Omics’ technologies and systems biology for engineering Saccharomyces cerevisiae strains for lignocellulosic bioethanol production

, , &
Pages 659-675 | Published online: 09 Apr 2014

Bibliography

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl Acad. Sci. USA103(30),11206–11210 (2006).
  • Goldemberg J. The Brazilian biofuels industry. Biotechnol. Biofuels1(1),6 (2008).
  • Searchinger T, Heimlich R, Houghton RA et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science319(5867),1238–1240 (2008).
  • van Maris AJA, Abbott DA, Bellissimi E et al. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek90(4),391–418 (2006).
  • Thomas KC, Hynes SH, Ingledew WI. Effect of lactobacilli on yeast growth, viability and batch and semi-continuous alcoholic fermentation of corn mash. J. Appl. Microbiol.90(5),819–828 (2001).
  • Dien BS, Cotta MA, Jeffries TW. Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol.63(3),258–266 (2003).
  • Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, Ingram LO. Development of ethanologenic bacteria. Adv. Biochem. Eng. Biotechnol.108,237–261 (2007).
  • van Zyl WH, Lynd LR, Den Haan R, McBride JE. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol.108,205–235 (2007).
  • Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol.56(1–2),17–34 (2001).
  • Lynd L. Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Ann. Rev. Energy Environ.21,403–465 (1996).
  • Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol.108,147–177 (2007).
  • Almeida JRM, Modig T, Petersson A, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol.82(4),340–349 (2007).
  • Rodríguez-Moyá M, Gonzalez R. Systems biology approaches for the microbial production of biofuels. Biofuels1(2),291–310 (2010).
  • Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol.83(1),1–11 (2002).
  • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour. Technol.74(1),17–24 (2000).
  • Smith MT, Cameron DR, Duff SJB. Comparison of industrial yeast strains for fermentation of spent sulphite pulping liquor fortified with wood hydrolysate. J. Ind. Microbiol. Biotechnol.18(1),18–21 (1997).
  • Larsson S, Palmqvist E, Hahn-Hägerdal B et al. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enz. Microb. Technol.24(3–4),151–159 (1999).
  • Olsson L, Hahn-Hägerdal B. Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates. Proc. Biochem.28(4),249–257 (1993).
  • Gasch AP, Spellman PT, Kao CM et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell11(12),4241–4257 (2000).
  • Dihazi H, Kessler R, Eschrich K. High osmolarity glycerol (HOG) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress. J. Biol. Chem.279(23),23961–23968 (2004).
  • Mager WH, Siderius M. Novel insights into the osmotic stress response of yeast. FEMS Yeast Res.2(3),251–257 (2002).
  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res.48(8),3713–3729 (2009).
  • Jorgensen H, Vibe-Pedersen J, Larsen J, Felby C. Liquefaction of lignocellulose at high-solids concentrations. Biotechnol. Bioeng.96(5),862–870 (2007).
  • van Voorst F, Houghton-Larsen J, Jonson L, Kielland-Brandt MC, Brandt A. Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast23(5),351–359 (2006).
  • Gasch AP, Spellman PT, Kao CM et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell11(12),4241–4257 (2000).
  • Jelinsky SA, Samson LD. Global response of Saccharomyces cerevisiae to an alkylating agent. Proc. Natl Acad. Sci. USA96(4),1486–1491 (1999).
  • Gasch AP, Huang M, Metzner S, Botstein D, Elledge SJ, Brown PO. Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol. Biol. Cell12(10),2987–3003 (2001).
  • Gasch AP, Werner-Washburne M. The genomics of yeast responses to environmental stress and starvation. Funct. Integr. Genom.2(4–5),181–192 (2002).
  • Griffin TJ, Gygi SP, Ideker T et al. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics1(4),323–333 (2002).
  • Kobayashi N, McEntee K. Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol. Cell. Biol.13(1),248–256 (1993).
  • Marchler G, Schuller C, Adam G, Ruis H. A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J.12(5),1997–2003 (1993).
  • Martínez-Pastor MT, Marchler G, Schüller C, Marchler-Bauer A, Ruis H, Estruch F. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J.15(9),2227–2235 (1996).
  • Kobayashi N, McClanahan TK, Simon JR, Treger JM, McEntee K. Structure and functional analysis of the multistress response gene DDR2 from Saccharomyces cerevisiae. Biochem. Biophys. Res. Comm.229(2),540–547 (1996).
  • Wojda I, Alonso-Monge R, Bebelman JP, Mager WH, Siderius M. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology149(Pt 5),1193–1204 (2003).
  • Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev.66(2),300–372 (2002).
  • García R, Bermejo C, Grau C et al. The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J. Biol. Chem.279(15),15183–15195 (2004).
  • García R, Rodríguez-Peña JM, Bermejo C, Nombela C, Arroyo J. The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolyase-induced cell wall stress in Saccharomyces cerevisiae. J. Biol. Chem.284(16),10901–10911 (2009).
  • Lagorce A, Hauser NC, Labourdette D et al. Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J. Biol. Chem.278(22),20345–20357 (2003).
  • Moskvina E, Schüller C, Maurer CT, Mager WH, Ruis H. A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast14(11),1041–1050 (1998).
  • Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol.66(1),10–26 (2004).
  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science314(5805),1565–1568 (2006).
  • Lin FM, Qiao B, Yuan YJ. Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Appl. Environ. Microbiol.75(11),3765–3776 (2009).
  • Ubiyvovk VM, Blazhenko OV, Gigot D, Penninckx M, Sibirny AA. Role of γ-glutamyltranspeptidase in detoxification of xenobiotics in the yeasts Hansenula polymorpha and Saccharomyces cerevisiae. Cell. Biol. Int.30(8),665–671 (2006).
  • Fleck CB, Brock M. Re-characterisation of Saccharomyces cerevisiae Ach1p: fungal CoA-transferases are involved in acetic acid detoxification. Fungal Genet. Biol.46(6–7),473–485 (2009).
  • Bauer BE, Rossington D, Mollapour M, Mamnun Y, Kuchler K, Piper PW. Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. Eur. J. Biochem.270(15),3189–3195 (2003).
  • Schüller C, Mamnun YM, Mollapour M et al. Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol. Biol. Cell15(2),706–720 (2004).
  • Xia JM, Yuan YJ. Comparative lipidomics of four strains of Saccharomyces cerevisiae reveals different responses to furfural, phenol, and acetic acid. J. Agric. Food Chem.57(1),99–108 (2009).
  • Casey E, Sedlak M, Ho NW, Mosier NS. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Res.10(4),385–393 (2010).
  • Warringer J, Hult M, Regot S, Posas F, Sunnerhagen P. The HOG pathway dictates the short-term translational response after hyperosmotic shock. Mol. Biol. Cell21,3080–3092 (2010).
  • Horváth IS, Franzén CJ, Taherzadeh MJ, Niklasson C, Lidén G. Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Appl. Environ. Microbiol.69(7),4076–4086 (2003).
  • Lin FM, Tan Y, Yuan YJ. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural. Proteomics9(24),5471–5483 (2009).
  • Petersson A, Almeida JRM, Modig T et al. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast23(6),455–464 (2006).
  • Liu ZL, Ma M, Song M. Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol. Genet. Genom.282(3),233–244 (2009).
  • Li BZ, Yuan YJ. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol.86(6),1915–1924 (2010).
  • Coburn RF. Polyamine effects on cell function: possible central role of plasma membrane PI(4,5)P2. J. Cell. Physiol.221(3),544–551 (2009).
  • Piper P, Mahe Y, Thompson S et al. The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J.17(15),4257–4265 (1998).
  • Endo A, Nakamura T, Shima J. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. FEMS Microbiol. Lett.299,95–99 (2009).
  • Sundström L, Larsson S, Jönsson LJ. Identification of Saccharomyces cerevisiae genes involved in the resistance to phenolic fermentation inhibitors. Appl. Biochem. Biotechnol.161(1–8),106–115 (2009).
  • Hirasawa T, Ashitani K, Yoshikawa K et al. Comparison of transcriptional responses to osmotic stresses induced by NaCl and sorbitol additions in Saccharomyces cerevisiae using DNA microarray. J. Biosci. Bioeng.102(6),568–571 (2006).
  • Ding MZ, Cheng JS, Xiao WH, Qiao B, Yuan YJ. Comparative metabolomic analysis on industrial continuous and batch ethanol fermentation processes by GC-TOF-MS. Metabolomics5(2),229–238 (2009).
  • Bai FW, Chen LJ, Zhang Z, Anderson WA, Moo-Young M. Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J. Biotechnol.110(3),287–293 (2004).
  • Pina C, Couto JA, Hogg T. Inferring ethanol tolerance of Saccharomyces and non-Saccharomyces yeasts by progressive inactivation. Biotechnol. Lett.26(19),1521–1527 (2004).
  • Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett.498(1),98–103 (2001).
  • Dinh TN, Nagahisa K, Hirasawa T, Furusawa C, Shimizu H. Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. PLoS One3(7),e2623 (2008).
  • Dinh TN, Nagahisa K, Yoshikawa K, Hirasawa T, Furusawa C, Shimizu H. Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray. Bioprocess Biosyst. Eng.32(5),681–688 (2009).
  • Ogawa Y, Nitta A, Uchiyama H, Imamura T, Shimoi H, Ito K. Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J. Biosci. Bioeng.90(3),313–320 (2000).
  • Kolkman A, Olsthoorn MM, Heeremans CE, Heck AJ, Slijper M. Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol. Mol. Cell. Proteomics4(1),1–11 (2005).
  • Hirasawa T, Yoshikawa K, Nakakura Y et al. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J. Biotechnol.131(1),34–44 (2007).
  • Ma M, Liu LZ. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae. BMC Microbiol.10,169 (2010).
  • Carreto L, Eiriz MF, Gomes AC, Pereira PM, Schuller D, Santos MA. Comparative genomics of wild type yeast strains unveils important genome diversity. BMC Genom.9,524 (2008).
  • Argueso JL, Carazzolle MF, Mieczkowski PA et al. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome. Res.19(12),2258–2270 (2009).
  • Mense SM, Zhang L. Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell. Res.16(8),681–692 (2006).
  • Tamura K, Gu Y, Wang Q, Yamada T, Ito K, Shimoi H. A hap1 mutation in a laboratory strain of Saccharomyces cerevisiae results in decreased expression of ergosterol-related genes and cellular ergosterol content compared to sake yeast. J. Biosci. Bioeng.98(3),159–166 (2004).
  • Aguilera F, Peinado RA, Millán C, Ortega JM, Mauricio JC. Relationship between ethanol tolerance, H+ -ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int. J. Food Microbiol.110(1),34–42 (2006).
  • Inoue T, Iefuji H, Fujii T, Soga H, Satoh K. Cloning and characterization of a gene complementing the mutation of an ethanol-sensitive mutant of sake yeast. Biosci. Biotechnol. Biochem.64(2),229–236 (2000).
  • Yazawa H, Iwahashi H, Uemura H. Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae. Yeast24(7),551–560 (2007).
  • Ho NW, Chen Z, Brainard AP, Sedlak M. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv. Biochem. Eng. Biotechnol.65,163–192 (1999).
  • Verduyn C, Van Kleef R, Frank J, Schreuder H, Van Dijken JP, Scheffers WA. Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia. Stipitis. Biochem. J.226(3),669–677 (1985).
  • Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U. Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl. Environ. Microbiol.70(4),2307–2317 (2004).
  • Jin YS, Jeffries TW. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl. Biochem. Biotechnol.105–108,277–286 (2003).
  • Jin YS, Ni H, Laplaza JM, Jeffries TW. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl. Environ. Microbiol.69(1),495–503 (2003).
  • Jin YS, Laplaza JM, Jeffries TW. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl. Environ. Microbiol.70(11),6816–6825 (2004).
  • Karhumaa K, Påhlman AK, Hahn-Hägerdal B, Levander F, Gorwa-Grauslund MF. Proteome analysis of the xylose-fermenting mutant yeast strain TMB 3400. Yeast26(7),371–382 (2009).
  • Pitkänen JP, Aristidou A, Salusjärvi L, Ruohonen L, Penttilä M. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab. Eng.5(1),16–31 (2003).
  • Krahulec S, Petschacher B, Wallner M, Longus K, Klimacek M, Nidetzky B. Fermentation of mixed glucose–xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microb. Cell. Fact.9,16 (2010).
  • Grotkjaer T, Christakopoulos P, Nielsen J, Olsson L. Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains. Metab. Eng.7(5–6),437–444 (2005).
  • Jin YS, Jeffries TW. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metab. Eng.6(3),229–238 (2004).
  • Bisson LF, Coons DM, Kruckeberg AL, Lewis DA. Yeast sugar transporters. Crit. Rev. Biochem. Mol. Biol.28(4),259–308 (1993).
  • Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology148(Pt 9),2783–2788 (2002).
  • Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttilä M, Ruohonen L. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl. Microbiol. Biotechnol.74(5),1041–1052 (2007).
  • Sedlak M, Ho NW. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast21(8),671–684 (2004).
  • Salusjärvi L, Pitkänen JP, Aristidou A, Ruohonen L, Penttilä M. Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose. Appl. Biochem. Biotechnol.128(3),237–261 (2006).
  • Salusjärvi L, Kankainen M, Soliymani R, Pitkänen JP, Penttilä M, Ruohonen L. Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microb. Cell. Fact.7,18 (2008).
  • Wahlbom CF, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B, Jönsson LJ. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol.69(2),740–746 (2003).
  • Runquist D, Fonseca C, Rådström P, Spencer-Martins I, Hahn-Hägerdal B. Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol.82(1),123–130 (2009).
  • Runquist D, Hahn-Hägerdal B, Rådström P. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels3,5 (2010).
  • Kuyper M, Winkler AA, van Dijken JP, Pronk JT. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res.4(6),655–664 (2004).
  • Bengtsson O, Jeppsson M, Sonderegger M et al. Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Yeast25(11),835–847 (2008).
  • Cheng JS, Qiao B, Yuan YJ. Comparative proteome analysis of robust Saccharomyces cerevisiae insights into industrial continuous and batch fermentation. Appl. Microbiol. Biotechnol.81(2),327–338 (2008).
  • Jeffries TW, Grigoriev IV, Grimwood J et al. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat. Biotechnol.25(3),319–326 (2007).
  • Smith DR, Quinlan AR, Peckham HE et al. Rapid whole-genome mutational profiling using next-generation sequencing technologies. Gen. Res.18(10),1638–1642 (2008).
  • Jin YS, Alper H, Yang YT, Stephanopoulos G. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol.71(12),8249–8256 (2005).
  • Becker J, Boles E. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl. Environ. Microbiol.69(7),4144–4150 (2003).
  • Wisselink HW, Cipollina C, Oud B et al. Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae. Metab. Eng.12(6),537–551 (2010).
  • Oberhardt MA, Palsson BØ, Papin JA. Applications of genome-scale metabolic reconstructions. Mol. Syst. Biol.5,320 (2009).
  • Price ND, Reed JL, Palsson BØ. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol.2(11),886–897 (2004).
  • Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat. Biotechnol.28(3),245–248 (2010).
  • Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng.84(6),647–657 (2003).
  • Yang L, Cluett WR, Mahadevan R. EMILiO: a fast algorithm for genome-scale strain design. Metab. Eng.13(3),272–281 (2011).
  • Mahadevan R, Edwards JS, Doyle FJ 3rd. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J.83(3),1331–1340 (2002).
  • Bro C, Regenberg B, Förster J, Nielsen J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng.8(2),102–111 (2006).
  • Hjersted JL, Henson MA, Mahadevan R. Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Biotechnol. Bioeng.97(5),1190–1204 (2007).
  • Hjersted JL, Henson MA. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae. IET Syst. Biol.3(3),167–179 (2009).
  • Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl. Environ. Microbiol.68(4),1604–1609 (2002).
  • Bideaux C, Alfenore S, Cameleyre X, Molina-Jouve C, Uribelarrea JL, Guillouet SE. Minimization of glycerol production during the high-performance fed-batch ethanolic fermentation process in Saccharomyces cerevisiae, using a metabolic model as a prediction tool. Appl. Environ. Microbiol.72(3),2134–2140 (2006).
  • Çakir T, Arga KY, Altintaş MM, Ülgen KÖ. Flux analysis of recombinant Saccharomyces cerevisiae YPB-G utilizing starch for optimal ethanol production. Proc. Biochem.39(12),2097–2108 (2004).
  • Wright J, Bellissimi E, de Hulster E, Wagner A, Pronk JT, van Maris AJ. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res. (2011) (In Press).
  • Almeida JR, Bertilsson M, Hahn-Hägerdal B, Liden G, Gorwa-Grauslund MF. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Appl. Microbiol. Biotechnol.84(4),751–761 (2009).
  • Tomás-Pejó E, Ballesteros M, Oliva JM, Olsson L. Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes. J. Ind. Microbiol. Biotechnol.37(11),1211–1220 (2010).
  • Martín C, Marcet M, Almazán O, Jönsson LJ. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour. Technol.98(9),1767–1773 (2007).
  • Shi DJ, Wang CL, Wang KM. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol.36(1),139–147 (2009).
  • Yu L, Pei X, Lei T, Wang Y, Feng Y. Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J. Biotechnol.134(1–2),154–159 (2008).
  • Kai Z, Ping WX, Lina ZN et al. Screening and breeding of high taxol producing fungi by genome shuffling. Sci. China Ser. C-Life Sci.51(3),222–231 (2008).
  • Wei P, Li Z, He P, Lin Y, Jiang N. Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance. Biotechnol. Appl. Biochem.49,113–120 (2008).
  • Patnaik R, Louie S, Gavrilovic V et al. Genome shuffling of Lactobacillus for improved acid tolerance. Nat. Biotechnol.20(7),707–712 (2002).
  • Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayre SB. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature415(6872),644–646 (2002).
  • Hou L. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol.160(4),1084–1093 (2009).
  • Hou L. Novel methods of genome shuffling in Saccharomyces cerevisiae. Biotechnol. Lett.31(5),671–677 (2009).
  • Bajwa PK, Shireen T, D’Aoust F et al. Mutants of the pentose-fermenting yeast Pichia stipitis with improved tolerance to inhibitors in hardwood spent sulfite liquor. Biotechnol. Bioeng.104(5),892–900 (2009).
  • Pinel D, D’Aoust F, del Cardayre S, Bajwa PK, Lee H, Martin VJJ. Genome shuffling of Saccharomyces cerevisiae through recursive population mating leads to improved tolerance to spent sulfite liquor. Appl. Environ. Microbiol. (2011) (In Press).
  • Shaw AJ, Podkaminer KK, Desai SG et al. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc. Natl Acad. Sci. USA105(37),13769–13774 (2008).
  • Den Haan R, Rose SH, Lynd LR, van Zyl WH. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab. Eng.9(1),87–94 (2007).
  • Den Haan R, Mcbride JE, La Grange DC, Lynd LR, Van Zyl WH. Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb. Tech.40(5),1291–1299 (2007).
  • Raden D, Hildebrandt S, Xu P, Bell E, Doyle FJ 3rd, Robinson AS. Analysis of cellular response to protein overexpression. Syst. Biol.152(4),285–289 (2005).
  • Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science315(5813),801–804 (2007).
  • Stambuk BU, Dunn B, Alves SL Jr, Duval EH, Sherlock G. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome. Res.19(12),2271–2278 (2009).
  • McCourt JA, Nixon PF, Duggleby RG. Thiamin nutrition and catalysis-induced instability of thiamin diphosphate. Br. J. Nutr.96(4),636–638 (2006).
  • Borneman AR, Desany BA, Riches D et al. Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet.7(2),e1001287 (2011).
  • Badotti F, Belloch C, Rosa CA, Barrio E, Querol A. Physiological and molecular characterization of Saccharomyces cerevisiae cachaça strains isolated from different geographical regions in Brazil. World J. Microbiol. Biotechnol.26,579–587 (2010).
  • Garay-Arroyo A, Covarrubias AA, Clark I, Niño I, Gosset G, Martinez A. Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl. Microbiol. Biotechnol.63(6),734–741 (2004).
  • Smith EN, Kruglyak L. Gene-environment interaction in yeast gene expression. PLoS Biol.6(4),e83 (2008).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.