464
Views
108
CrossRef citations to date
0
Altmetric
Review

Synergistic interactions in cellulose hydrolysis

&
Pages 61-70 | Published online: 09 Apr 2014

References

  • Reese ET, Siu RG, Levinson HS. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol.59(4),485–497 (1950).
  • Eriksson KE, Pettersson B. Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. 3. Purification and physico-chemical characterization of an exo-1,4-beta-glucanase. Eur. J. Biochem.51(1),213–218 (1975).
  • Wood TM, Mccrae SI. The purification and properties of the C1 component of Trichoderma koningii cellulase. Biochem. J.128(5),1183–1192 (1972).
  • Halliwell G, Griffin M. The nature and mode of action of the cellulolytic component C1 of Trichoderma koningii on native cellulose. Biochem. J.135(4),587–594 (1973).
  • Berghem LE, Pettersson LG. The mechanism of enzymatic cellulose degradation. Purification of a cellulolytic enzyme from Trichoderma viride active on highly ordered cellulose. Eur. J. Biochem.37(1),21–30 (1973).
  • Wood TM, Mccrae SI. Synergism between enzymes involved in the solubilization of native cellulose. 181–209 (1979).
  • Fagerstam L, Pettersson L. The 1.4-β-glucan cellobiohydrolases of Trichoderma reesei QM 9414. A new type of cellulolytic synergism. FEBS Lett.119(1),97–100 (1980).
  • Henrissat B, Driguez H, Viet C, Schülein M. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Biol. Technol.3(8),722–726 (1985).
  • Tomme P, Heriban V, Claeyssens M. Adsorption of two cellobiohydrolases from Trichoderma reesei to avicel: evidence for “exo-exo” synergism and possible “loose complex” formation. Biotechnol. Lett.12(7),525–530 (1990).
  • Nidetzky B, Steiner W, Hayn M, Claeyssens M. Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem. J.298,3, 705–710 (1994).
  • Barr BK, Hsieh YL, Ganem B, Wilson DB. Identification of two functionally different classes of exocellulases. Biochemistry35(2),586–592 (1996).
  • Berghem LE, Pettersson LG. The mechanism of enzymatic cellulose degradation. Isolation and some properties of a beta-glucosidase from Trichoderma viride. Eur. J. Biochem.46(2),295–305 (1974).
  • Irwin DC, Spezio M, Walker LP, Wilson DB. Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol. Bioeng.42(8),1002–1013 (1993).
  • Zhang YH, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng.88(7),797–824 (2004).
  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels3,10 (2010).
  • Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF. Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose16(4),641–647 (2009).
  • Sathitsuksanoh N, Zhu ZG, Wi S, Zhang YHP. Cellulose solvent-based biomass pretreatment breaks highly ordered hydrogen bonds in cellulose fibers of switchgrass. Biotechnol. Bioeng.108(3),521–529 (2011).
  • Larsson P, Wickholm K, Iversen T. A CP/MAS13C NMR investigation of molecular ordering in celluloses. Carbohydr. Res.302(1–2),19–25 (1997).
  • Valjamae P, Sild V, Nutt A, Pettersson G, Johansson G. Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I. Eur. J. Biochem.266(2),327–334 (1999).
  • Jeoh T, Wilson DB, Walker LP. Effect of cellulase mole fraction and cellulose recalcitrance on synergism in cellulose hydrolysis and binding. Biotechnol. Prog.22(1),270–277 (2006).
  • Zhang YH, Lynd LR. A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol. Bioeng.94(5),888–898 (2006).
  • Levine SE, Fox JM, Blanch HW, Clark DS. A mechanistic model of the enzymatic hydrolysis of cellulose. Biotechnol. Bioeng.107(1),37–51 (2010).
  • Zhou W, Schuttler HB, Hao Z, Xu Y. Cellulose hydrolysis in evolving substrate morphologies I: a general modeling formalism. Biotechnol. Bioeng.104(2),261–274 (2009).
  • Igarashi K, Koivula A, Wada M, Kimura S, Penttila M, Samejima M. High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J. Biol. Chem.284(52),36186–36190 (2009).
  • Chanzy H, Henrissat B, Vuong R. Colloidal gold labeling of 1,4-beta-d-glucan cellobiohydrolase adsorbed on cellulose substrates. FEBS Lett.172(2),193–197 (1984).
  • Parsiegla G, Juy M, Reverbel-Leroy C et al. The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 A resolution. EMBO J.17(19),5551–5562 (1998).
  • Boisset C, Fraschini C, Schulein M, Henrissat B, Chanzy H. Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Appl. Environ. Microbiol.66(4),1444–1452 (2000).
  • Chanzy H, Henrissat B, Vuong R, Schulein M. The action of 1,4-beta-D-glucan cellobiohydrolase on Valonia cellulose microcrystals. An electron microscopy study. FEBS Lett.153,113–118 (1983).
  • Irwin DC, Zhang S, Wilson DB. Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca.Eur. J. Biochem.267(16),4988–4997 (2000).
  • Spiridonov NA, Wilson DB. Regulation of biosynthesis of individual cellulases in Thermomonospora fusca.J. Bacteriol.180(14),3529–3532 (1998).
  • Ghosh A, Ghosh BK, Trimino-Vazquez H, Eveleigh DE, Montenecourt BS. Cellulase secretion from a hyper-cellulolytic mutant of Trichoderma reesei Rut-C30. Arch. Microbiol.140(2–3),126–133 (1984).
  • Watson BJ, Zhang H, Longmire AG, Moon YH, Hutcheson SW. Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans.J. Bacteriol.191(18),5697–5705 (2009).
  • Gilad R, Rabinovich L, Yaron S et al. CelI, a noncellulosomal family 9 enzyme from Clostridium thermocellum, is a processive endoglucanase that degrades crystalline cellulose. J. Bacteriol.185(2),391–398 (2003).
  • Sakon J, Irwin D, Wilson DB, Karplus PA. Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca.Nat. Struct. Biol.4(10),810–818 (1997).
  • Li Y, Irwin DC, Wilson DB. Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl. Environ. Microbiol.73(10),3165–3172 (2007).
  • Irwin D, Shin DH, Zhang S et al. Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J. Bacteriol.180(7),1709–1714 (1998).
  • Watson DL, Wilson DB, Walker LP. Synergism in binary mixtures of Thermobifida fusca cellulases Cel6B, Cel9A, and Cel5A on BMCC and Avicel. Appl. Biochem. Biotechnol.101(2),97–111 (2002).
  • Valjamae P, Kipper K, Pettersson G, Johansson G. Synergistic cellulose hydrolysis can be described in terms of fractal-like kinetics. Biotechnol. Bioeng.84(2),254–257 (2003).
  • Ryu DDY, Lee SB. Enzymatic hydrolysis of cellulose: determination of kinetic parameters. Chem. Eng. Comm.45(1),119–134 (1986).
  • Ortega N. Kinetics of cellulose saccharification by Trichoderma reesei cellulases. Int. Biodet. Biodegr.47(1),7–14 (2001).
  • Valjamae P, Pettersson G, Johansson G. Mechanism of substrate inhibition in cellulose synergistic degradation. Eur. J. Biochem.268(16),4520–4526 (2001).
  • Huang X, Penner MH. Apparent substrate inhibition of the Trichoderma reesei cellulase system. J. Agr. Food Chem.39(11),2096–2100 (1991).
  • Bayer EA, Belaich JP, Shoham Y, Lamed R. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol.58,521–554 (2004).
  • Jeoh T, Wilson DB, Walker LP. Cooperative and competitive binding in synergistic mixtures of Thermobifida fusca cellulases Cel5A, Cel6B, and Cel9A. Biotechnol. Prog.18(4),760–769 (2002).
  • Kyriacou A, Neufeld RJ, Mackenzie CR. Reversibility and competition in the adsorption of Trichoderma-Reesei cellulase components. Biotechnol. Bioeng.33(5),631–637 (1989).
  • Medve J, Karlsson J, Lee D, Tjerneld F. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol. Bioeng.59(5),621–634 (1998).
  • Ryu DDY, Kim C, Mandels M. competitive adsorption of cellulase components and its significance in a synergistic mechanism. Biotechnol. Bioeng.26(5),488–496 (1984).
  • Kostylev M, Moran-Mirabal JM, Walker LP, Wilson DB. Determination of the molecular states of the processive endocellulase Thermobifida fusca Cel9A during crystalline cellulose depolymerization. Biotechnol. Bioeng.109(1),295–299 (2012).
  • Josefsson P, Henriksson G, Wagberg L. The physical action of cellulases revealed by a quartz crystal microbalance study using ultrathin cellulose films and pure cellulases. Biomacromolecules9(1),249–254 (2008).
  • Valjamae P, Sild V, Pettersson G, Johansson G. The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface-erosion model. Eur. J. Biochem.253(2),469–475 (1998).
  • Igarashi K, Uchihashi T, Koivula A et al. Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science333(6047),1279–1282 (2011).
  • Bayer EA, Lamed R, White BA, Flint HJ. From cellulosomes to cellulosomics. Chem. Rec.8(6),364–377 (2008).
  • Caspi J, Irwin D, Lamed R et al. Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. J. Biotechnol.135(4),351–357 (2008).
  • Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol.101(13),4851–4861 (2010).
  • Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN. Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv. Biochem. Eng. Biotechnol.108,67–93 (2007).
  • Bura R, Chandra R, Saddler J. Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnol. Prog.25(2),315–322 (2009).
  • Varnai A, Siika-Aho M, Viikari L. Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme Microb. Technol.46(3–4),185–193 (2010).
  • Selig MJ, Knoshaug EP, Adney WS, Himmel ME, Decker SR. Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour. Technol.99(11),4997–5005 (2008).
  • Hu J, Arantes V, Saddler JN. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol. Biofuels4,36 (2011).
  • Morais S, Barak Y, Caspi J et al. Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. MBio1(5), (2010).
  • Morais S, Barak Y, Caspi J et al. Contribution of a xylan-binding module to the degradation of a complex cellulosic substrate by designer cellulosomes. Appl. Environ. Microbiol.76(12),3787–3796 (2010).
  • Reese ET. Polysaccharases and the Hydrolysis of Insoluble Substrates. Leise W (Ed.). Springer-Verlag, NY, USA, 165–181 (1975).
  • Tomme P, Van Tilbeurgh H, Pettersson G et al. Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur. J. Biochem.170(3),575–581 (1988).
  • Din N, Gilkes NR, Tekant B, Miller RC, Warren AJ, Kilburn DG. Non-hydrolytic disruption of cellulose fibers by the binding domain of a bacterial cellulase. Bio. Technol.9(11),1096–1099 (1991).
  • Teeri T, Reinikainen T, Ruohonen L, Jones TA, Knowles JKC. Domain function in Trichoderma reesei cellobiohydrolases. J. Biotechnol.24(2),169–176 (1992).
  • Esteghlalian AR, Srivastava V, Gilkes NR, Kilburn DG, Warren RA, Saddle JN. Do cellulose binding domains increase substrate accessibility? Appl. Biochem. Biotechnol.91–93,575–592 (2001).
  • Vaaje-Kolstad G, Horn SJ, Van Aalten DM, Synstad B, Eijsink VG. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J. Biol. Chem.280(31),28492–28497 (2005).
  • Vaaje-Kolstad G, Westereng B, Horn SJ et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science330(6001),219–222 (2010).
  • Moser F, Irwin D, Chen S, Wilson DB. Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnol. Bioeng.100(6),1066–1077 (2008).
  • Forsberg Z, Vaaje-Kolstad G, Westereng B et al. Cleavage of cellulose by a CBM33 protein. Protein Sci.20(9),1479–1483 (2011).
  • Harris PV, Welner D, Mcfarland KC et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry49(15),3305–3316 (2010).
  • Phillips CM, Beeson WT, Cate JH, Marletta MA. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa.ACS Chem. Biol. doi:10.1021/cb200351y (2011) (Epub ahead of print).
  • Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl. Environ. Microbiol. (2011).
  • Quinlan RJ, Sweeney MD, Lo Leggio L et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc. Natl Acad. Sci. USA (2011).
  • Vaaje-Kolstad G, Houston DR, Riemen AH, Eijsink VG, Van Aalten DM. Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J. Biol. Chem.280(12),11313–11319 (2005).
  • Karkehabadi S, Hansson H, Kim S, Piens K, Mitchinson C, Sandgren M. The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 A resolution. J. Mol. Biol.383(1),144–154 (2008).
  • Santa-Maria M, Jeoh T. Molecular-scale investigations of cellulose microstructure during enzymatic hydrolysis. Biomacromolecules11(8),2000–2007 (2010).
  • Jervis EJ, Haynes CA, Kilburn DG. Surface diffusion of cellulases and their isolated binding domains on cellulose. J. Biol. Chem.272(38),24016–24023 (1997).
  • Moran-Mirabal JM, Bolewski JC, Walker LP. Reversibility and binding kinetics of Thermobifida fusca cellulases studied through fluorescence recovery after photobleaching microscopy. Biophys. Chem.155(1),20–28 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.