270
Views
16
CrossRef citations to date
0
Altmetric
Review

Engineering microorganisms for biofuel production

, , , , &
Pages 153-166 | Published online: 09 Apr 2014

Bibliography

  • Atsumi S, Liao JC. Metabolic engineering for advanced biofuels production from Escherichia coli. Curr. Opin. Biotechnol.19(5),414–419 (2008).
  • Peralta-Yahya PP, Keasling JD. Advanced biofuel production in microbes. Biotechnol. J.5(2),147–162 (2010).
  • Filho E, de Melo H, Antunes D et al. Isolation by genetic and physiological characteristics of a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic manipulation. J. Ind. Microbiol. Biotechnol.32(10),481–486 (2005).
  • Weber C, Farwick A, Benisch F et al. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl. Microbiol. Biotechnol.87(4),1303–1315 (2010).
  • Miller RG. Future oil supply: the changing stance of the International Energy Agency. Energ. Policy DOI: 10.1016/j.enpol.2010.12.032 (2011). (Epub ahead of print).
  • van Zyl WH, Lynd LR, den Haan R, McBride JE. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol.108,205–235 (2007).
  • Lynd LR, van Zyl WH, McBride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol.16(5),577–583 (2005).
  • Gowen CM, Fong SS. Exploring biodiversity for cellulosic biofuel production. Chem. Biodiv.7(5),1086–1097 (2010).
  • Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science315,801–804 (2007).
  • Pienkos PT, Zhang M. Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose16(4),743–762 (2009).
  • Alper H, Stephanopoulos G. Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat. Rev. Microbiol.7(10),715–723 (2009).
  • Martinez D, Challacombe J, Morgenstern I et al. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc. Natl Acad. Sci. USA106(6),1954–1959 (2009).
  • Xu Q, Singh A, Himmel ME. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr. Opin. Biotechnol.20(3),364–371 (2009).
  • Lee SK, Chou H, Ham TS, Lee TS, Keasling JD. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol.19(6),556–563 (2008).
  • Elkins JG, Raman B, Keller M. Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Curr. Opin. Biotechnol.21(5),657–662 (2010).
  • Wen F, Sun J, Zhao HM. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl. Environ. Microbiol.76(4),1251–1260 (2010).
  • Wilson DB. Cellulases and biofuels. Curr. Opin. Biotechnol.20(3),295–299 (2009).
  • Wen F, Nair NU, Zhao H. Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr. Opin. Biotechnol.20(4),412–419 (2009).
  • Wilson DB. Three microbial strategies for plant cell wall degradation. Ann. NY Acad. Sci.1125(1),289–297 (2008).
  • Choi JH, Lee SY. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol.64(5),625–635 (2004).
  • Schädel C, Blöchl A, Richter A, Hoch G. Quantification and monosaccharide composition of hemicelluloses from different plant functional types. Plant Physiol. Biochem.48(1),1–8 (2010).
  • Nichols N, Dien B, Bothast R. Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl. Microbiol. Biotechnol.56,120–125 (2001).
  • Toivari MH, Aristidou A, Ruohonen L, Penttilä M. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab. Engin.3(3),236–249 (2001).
  • Karhumaa K, Hahn-Hagerdal B, Gorwa-Grauslund MF. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast22(5),359–368 (2005).
  • Gururajan VT, Gorwa-Grauslund MF, Hahn-Hagerdal B, Pretorius IS, Otero RRC. A constitutive catabolite repression mutant of a recombinant Saccharomyces cerevisiae strain improves xylose consumption during fermentation. Ann. Microbiol.57(1),85–92 (2007).
  • Becker J, Boles E. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl. Environ. Microbiol.69(7),4144–4150 (2003).
  • Sanchez RG, Karhumaa K, Fonseca C et al. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol. Biofuels3,13 (2010).
  • Rogers P, Jeon Y, Lee K, Lawford H. Zymomonas mobilis for fuel ethanol and higher value products. Adv. Biochem. Engin. Biotechnol.108,263–288 (2007).
  • Panesar PS, Marwaha SS, Kennedy JF. Zymomonas mobilis: an alternative ethanol producer. J. Chem. Technol. Biotechnol.81(4),623–635 (2006).
  • Sprenger GA. Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes. FEMS Microbiol. Lett.145(3),301–307 (1996).
  • De Graaf AA, Striegel K, Wittig RM et al. Metabolic state of Zymomonas mobilis in glucose-, fructose-, and xylose-fed continuous cultures as analyzed by 13C and 31P NMR spectroscopy. Arch. Microbiol.171(6),371–385 (1999).
  • Jeon YJ, Svenson CJ, Rogers PL. Over-expression of xylulokinase in a xylose-metabolising recombinant strain of Zymomonas mobilis.FEMS Microbiol. Lett.244(1),85–92 (2005).
  • Deanda K, Zhang M, Eddy C, Picataggio S. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl. Environ. Microbiol.62(12),4465–4470 (1996).
  • Gorke B, Stulke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Micro.6(8),613–624 (2008).
  • Jojima T, Omumasaba C, Inui M, Yukawa H. Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl. Microbiol. Biotechnol.85(3),471–480 (2010).
  • Roca C, Haack MB, Olsson L. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol.63(5),578–583 (2004).
  • Clomburg J, Gonzalez R. Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl. Microbiol. Biotechnol.86(2),419–434 (2010).
  • Karimova G, Ladant D, Ullmann A. Relief of catabolite repression in a cAMP-independent catabolite gene activator mutant of Escherichia coli. Res. Microbiol.155(2),76–79 (2004).
  • Khankal R, Chin J, Ghosh D, Cirino P. Transcriptional effects of CRP* expression in Escherichia coli. J. Biol. Engin.3(1),13 (2009).
  • Plumbridge J. Regulation of gene expression in the PTS in Escherichia coli: the role and interactions of Mlc. Curr. Opin. Microbiol.5(2),187–193 (2002).
  • Kimata K, Takahashi H, Inada T, Postma P, Aiba H. cAMP receptor protein-cAMP plays a crucial role in glucose-lactose diauxie by activating the major glucose transporter gene in Escherichia coli. Proc. Natl Acad. Sci. USA94(24),12914–12919 (1997).
  • Aboulwafa M, Chung YJ, Wai HH, Jr Saier MH. Studies on the Escherichia coli glucose-specific permease, PtsG, with a point mutation in its N-terminal amphipathic leader sequence. Microbiology149(3),763–771 (2003).
  • Notley-McRobb L, Ferenci T. Substrate specificity and signal transduction pathways in the glucose-specific enzyme II (EIIGlc) component of the Escherichia coli phosphotransferase system. J. Bacteriol.182(16),4437–4442 (2000).
  • Hernández-Montalvo V, Valle F, Bolivar F, Gosset G. Characterization of sugar mixtures utilization by an Escherichia coli mutant devoid of the phosphotransferase system. Appl. Microbiol. Biotechnol.57(1),186–191 (2001).
  • Hernández-Montalvo V, Martínez A, Hernández-Chavez G, Bolivar F, Valle F, Gosset G. Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol. Bioeng.83(6),687–694 (2003).
  • Ren C, Chen T, Zhang J, Liang L, Lin Z. An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli. Microb. Cell Fact.8,66 (2009).
  • Yomano L, York S, Shanmugam K, Ingram L. Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli. Biotechnol. Lett.31(9),1389–1398 (2009).
  • Tötemeyer S, Booth NA, Nichols WW, Dunbar B, Booth IR. From famine to feast: the role of methylglyoxal production in Escherichia coli. Mol. Microbiol.27(3),553–562 (1998).
  • Karhumaa K, Wiedemann B, Hahn-Hagerdal B, Boles E, Gorwa-Grauslund MF. Co-utilization of L-arabinose and d-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb. Cell Fact.5,18 (2006).
  • Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJA. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl. Environ. Microbiol.75(4),907–914 (2009).
  • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour. Technol.74(1),17–24 (2000).
  • Nigam JN. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis.J. Biotechnol.87(1),17–27 (2001).
  • Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO. Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl. Environ. Microbiol.75(13),4315–4323 (2009).
  • Martinez A, Rodriguez ME, Wells ML, York SW, Preston JF, Ingram LO. Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol. Prog.17(2),287–293 (2001).
  • Almeida J, Bertilsson M, Gorwa-Grauslund M, Gorsich S, Lidén G. Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl. Microbiol. Biotechnol.82(4),625–638 (2009).
  • Mills T, Sandoval N, Gill R. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol. Biofuels2(1),26 (2009).
  • Larsson S, Reimann A, Nilvebrant N-O, Jönsson L. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl. Biochem. Biotechnol.77(1),91–103 (1999).
  • Parajó JC, Domínguez H, Domínguez JM. Charcoal adsorption of wood hydrolysates for improving their fermentability: influence of the operational conditions. Bioresour. Technol.57(2),179–185 (1996).
  • Mussatto SI, Roberto IC. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour. Technol.93(1),1–10 (2004).
  • Parajó JC, Dominguez H, Domínguez JM. Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolysates. Enzyme Microb. Technol.21(1),18–24 (1997).
  • Nilvebrant N-O, Reimann A, Larsson S, Jönsson L. Detoxification of lignocellulose hydrolysates with ion-exchange resins. Appl. Biochem. Biotechnol.91–93(1),35–49 (2001).
  • López MJ, Nichols NN, Dien BS, Moreno J, Bothast RJ. Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl. Microbiol. Biotechnol.64(1),125–131 (2004).
  • Ghim CM, Kim T, Mitchell RJ, Lee SK. Synthetic biology for biofuels: building designer microbes from the scratch. Biotechnol. Bioproce. Eng.15(1),11–21 (2010).
  • Brynildsen MP, Liao JC. An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol. Syst. Biol.5,277 (2009).
  • Gonzalez R, Tao H, Purvis JE, York SW, Shanmugam KT, Ingram LO. Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (Parent) to LY01 (Resistant Mutant). Biotechnol. Prog.19(2),612–623 (2003).
  • Liu S, Dien BS, Nichols NN, Bischoff KM, Hughes SR, Cotta MA. Coexpression of pyruvate decarboxylase and alcohol dehydrogenase genes in Lactobacillus brevis.FEMS Microbiol. Lett.274(2),291–297 (2007).
  • Jarboe LR, Zhang XL, Wang X, Moore JC, Shanmugam KT, Ingram LO. Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J. Biomed. Biotechnol. DOI: 10.1155/2010/761042 (2010). (Epub ahead of print).
  • Koide T, Pang WL, Baliga NS. The role of predictive modelling in rationally re-engineering biological systems. Nat. Rev. Micro.7(4),297–305 (2009).
  • Keasling JD. Synthetic biology for synthetic chemistry. ACS Chem. Biol.3(1),64–76 (2008).
  • Lee SK, Keasling JD. A Salmonella-based, propionate-inducible, expression system for Salmonella enterica.Gene377,6–11 (2006).
  • Gronenborn B. Overproduction of phage λ repressor under control of the lac promotor of Escherichia coli. Mol. Gen. Genet.148(3),243–250 (1976).
  • Brosius J, Erfle M, Storella J. Spacing of the -10 and -35 regions in the tac promoter: effect on its in vivo activity. J. Biol. Chem.260(6),3539–3541 (1985).
  • Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol.189(1),113–130 (1986).
  • Elvin CM, Thompson PR, Argall ME et al. Modified bacteriophage λ promoter vectors for overproduction of proteins in Escherichia coli. Gene87(1),123–126 (1990).
  • Skerra A. Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene151(1–2),131–135 (1994).
  • Guzman L, Belin D, Carson M, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol.177(14),4121–4130 (1995).
  • Lee SK, Keasling JD. A propionate-inducible expression system for enteric bacteria. Appl. Environ. Microbiol.71(11),6856–6862 (2005).
  • Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol.72(2),211–222 (2006).
  • Lee SK, Keasling JD. Heterologous protein production in Escherichia coli using the propionate-inducible pPro system by conventional and auto-induction methods. Protein Expr. Purif.61(2),197–203 (2008).
  • Alper H, Fischer C, Nevoigt E, Stephanopoulos G. Tuning genetic control through promoter engineering. Proc. Natl Acad. Sci. USA102(36),12678–12683 (2005).
  • Jensen PR, Hammer K. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl. Environ. Microbiol.64(1),82–87 (1998).
  • Wong P, Gladney S, Keasling JD. Mathematical model of the lac operon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose. Biotechnol. Prog.13(2),132–143 (1997).
  • Lee SK, Newman JD, Keasling JD. Catabolite repression of the propionate catabolic genes in Escherichia coli and Salmonella enterica: evidence for involvement of the cyclic AMP receptor protein. J. Bacteriol.187(8),2793–2800 (2005).
  • Steen EJ, Kang Y, Bokinsky G et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature463,559–562 (2010).
  • Shen CR, Liao JC. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab. Engin.10(6),312–320 (2008).
  • Atsumi S, Hanai T, Liao JC. Nonfermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature451,86–89 (2008).
  • Lee SK, Chou HH, Pfleger BF, Newman JD, Yoshikuni Y, Keasling JD. Directed evolution of AraC for improved compatibility of arabinose- and lactose-inducible promoters. Appl. Environ. Microbiol.73(18),5711–5715 (2007).
  • Ham TS, Lee SK, Keasling JD, Arkin AP. A tightly regulated inducible expression system utilizing the fim inversion recombination switch. Biotechnol. Bioengin.94(1),1–4 (2006).
  • Ham TS, Lee SK, Keasling JD, Arkin AP. Design and construction of a double inversion recombination switch for heritable sequential genetic memory. PLoS ONE3(7),e2815 (2008).
  • Levskaya A, Weiner OD, Lim WA, Voigt CA. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature461,997–1001 (2009).
  • Shimizu-Sato S, Huq E, Tepperman JM, Quail PH. A light-switchable gene promoter system. Nat. Biotech.20(10),1041–1044 (2002).
  • Sorokina O, Kapus A, Terecskei K et al. A switchable light-input, light-output system modelled and constructed in yeast. J. Biol. Engin.3(1),15 (2009).
  • Lennen RM, Braden DJ, West RM, Dumesic JA, Pfleger BF. A process for microbial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol. Bioeng.106(2),193–202 (2010).
  • Fortman JL, Chhabra S, Mukhopadhyay A et al. Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol.26(7),375–381 (2008).
  • Chen JS, Hiu SF. Acetone butanol isopropanol production by Clostridium beijerinckii (Synonym, Clostridium butylicum).Biotechnol. Lett.8(5),371–376 (1986).
  • Inui M, Suda M, Kimura S et al. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol.77(6),1305–1316 (2008).
  • Atsumi S, Cann AF, Connor MR et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng.10(6),305–311 (2008).
  • Steen EJ, Chan R, Prasad N et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact.7,36 (2008).
  • Connor MR, Liao JC. Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. Appl. Environ. Microbiol.74(18),5769–5775 (2008).
  • Jojima T, Inui M, Yukawa H. Production of isopropanol by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol.77(6),1219–1224 (2008).
  • Kalscheuer R, Stolting T, Steinbuchel A. Microdiesel: Escherichia coli engineered for fuel production. Microbiology152,2529–2536 (2006).
  • Lu XF, Vora H, Khosla C. Overproduction of free fatty acids in Escherichia coli: implications for biodiesel production. Metab. Engin.10(6),333–339 (2008).
  • Zha W, Rubin-Pitel SB, Shao Z, Zhao H. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab. Engin.11(3),192–198 (2009).
  • Kirby J, Keasling JD. Metabolic engineering of microorganisms for isoprenoid production. Nat. Prod. Rep.25(4),656–661 (2008).
  • Barkovich R, Liao JC. Metabolic engineering of isoprenoids. Metab. Eng.3(1),27–39 (2001).
  • Withers ST, Gottlieb SS, Lieu B, Newman JD, Keasling JD. Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl. Environ. Microbiol.73,6277–6283 (2007).
  • Wang C, Yoon S-H, Shah AA et al. Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway. Biotechnol. Bioeng.107(3),421–429 (2010).
  • Rude MA, Schirmer A. New microbial fuels: a biotech perspective. Curr. Opin. Microbiol.12(3),274–281 (2009).
  • Li H, Cann AF, Liao JC. Biofuels: biomolecular engineering fundamentals and advances. Annu. Rev. Chem. Biomol. Eng.1(1),19–36 (2010).
  • Gibson DG, Glass JI, Lartigue C et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science329(5987),52–56 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.