9,627
Views
64
CrossRef citations to date
0
Altmetric
Review

Review on possible algal-biofuel production processes

&
Pages 333-349 | Published online: 09 Apr 2014

References

  • Chisti Y. Biodiesel from microalgae. Biotechnol. Adv.25(3),294–306 (2007).
  • Burlew JS. Algal Culture: From Laboratory to Pilot Plant. Carnegie Institute, WA, USA (1953).
  • Lehr F, Posten C. Closed photo-bioreactors as tools for biofuel production. Curr. Opin. Biotechnol.20(3),280–285 (2009).
  • Cock JM. Introduction to Marine Genomics. Springer Publishing, NY, USA (2010).
  • Lee RE. Phycology. Cambridge University Press, Cambridge, UK (1999).
  • Becker EW. Microalgae: Biotechnology and Microbiology. Cambridge University Press, Cambridge, UK (1994).
  • Hill A, Feinberg D. Fuel from Microalgae Lipid Products. Solar Energy Research Institute, Golden Colorado, CO, USA (1984).
  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol.19(3),235–240 (2008).
  • Harder R, von Witsch H. Bericht über versuche zur fettsynthese mittels autotropher mikroorganismen. Forschungsdienst Sonderheft16,270–275 (1942).
  • Müntz K. Die massenkultur von kleinalgen, bisherige ergebnisse und probleme. Die Kulturpflanze15,311–350 (1967).
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng.101(2),87–96 (2006).
  • Sheehan J, Dunahay T, Benemann R, Roessler G, Weissman C. A Look Back at the US Department of Energy’s Aquatic Species Program: Biodiesel from Algae. Knowledge Publications, London, UK (1998).
  • Borowitzka MA. Algal biotechnology products and processes – matching science and economics. J. Appl. Phycol.4(3),267–279 (1992).
  • Posten C. Design principles of photo-bioreactors for cultivation of microalgae. Eng. Life Sci.9(3),165–177 (2009).
  • Mirón AS, Gómez AC, Camacho FG, Grima EM, Chisti Y. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. In: Marine Bioprocess Engineering, Proceedings of an International Symposium organized under Auspices of The Working Party on Applied Biocatalysis of the Eurpean Federation of Biotechnology and The European Society for Marine Biotechnology (Volume 35). Elsevier, Amsterdam, The Netherlands, 249–270 (1999).
  • Carlsson AS, van Beilen JB, Möller R, Clayton D. Micro- and Macro-Algae: Utility for Industrial Applications: Outputs from the EPOBIO Project. CPL Press, Thatcham, UK (2007).
  • Posten C, Schaub G. Microalgae and terrestrial biomass as source for fuels – process view. J. Biotechnol.142(1),64–69 (2009).
  • Henderson R, Parsons SA, Jefferson B. The impact of algal properties and pre-oxidation on solid–liquid separation of algae. Water Res.42(8–9),1827–1845 (2008).
  • Neenan B. Fuels from Microalgae Technology Status, Potential and Research Requirements. Solar Energy Research Institute, Golden, CO, USA (1986).
  • Medina AR, Grima EM, Giménez AG, González MJI. Downstream processing of algal polyunsaturated fatty acids. Biotechnol. Adv.16(3),517–580 (1998).
  • Loew O, Bokorny T. Chemisch–physiologische studien über algen. J. Praktische Chem.36(1),272–291 (1887).
  • Li Y, Horsman M, Wang B, Wu N, Lan CQ. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol.81(4),629–636 (2008).
  • Illman AM, Scragg AH, Shales SW. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Technol.27(8),631–635 (2000).
  • Subramaniam R, Dufreche S, Zappi M, Bajpai R. Microbial lipids from renewable resources: production and characterization. J. Indust. Microbiol. Biotechnol.37(12),1271–1287 (2010).
  • Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol.126(4),499–507 (2006).
  • Kröger M, Müller-Langer F. Impact of heterotrophic and mixotrophic growth of microalgae on the production of future biofuels. Biofuels2(2),145–151 (2011).
  • Wijffels RH, Barbosa MJ. An outlook on microalgal biofuels. Science329(5993),796–799 (2010).
  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Genetic engineering of algae for enhanced biofuel production. Eukaryot. Cell9(4),486–501 (2010).
  • Doucha J, Lívanský K. Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl. Microbiol. Biotechnol.81(3),431–440 (2008).
  • Shen Y, Pei Z, Yuan W, Mao E. Effect of nitrogen and extraction method on algae lipid yield. Int. J. Agric. Biol. Eng.2(1),51–57 (2009).
  • Lee SJ, Yoon BD, Oh HM. Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol. Tech.12(7),553–556 (1998).
  • Herrero M, Cifuentes A, Ibañez E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food by-products, algae and microalgae: a review. Food Chem.98(1),136–148 (2006).
  • Mercer P, Armenta RE. Developments in oil extraction from microalgae. Eur. J. Lipid Sci. Technol.113(5),539–547 (2011).
  • King J. Supercritical Fluid Technology in Oil and Lipid Chemistry. AOCS Press, Champaign, IL, USA (1996).
  • Sievers U. Energy optimization of supercritical fluid extraction processes with separation at supercritical pressure. Chem. Eng. Process.37(5),451–460 (1998).
  • Frenz J, Largeau C, Casadevall E. Hydrocarbon recovery by extraction with a biocompatible solvent from free and immobilized cultures of Botryococcus braunii. Enz. Microb. Technol.11(11),717–724 (1989).
  • Hejazi MA, Wijffels RH. Milking of microalgae. Trends Biotechnol.22(4),189–194 (2004).
  • Wei F, Gao G-Z, Wang X-F et al. Quantitative determination of oil content in small quantity of oilseed rape by ultrasound-assisted extraction combined with gas chromatography. Ultrason. Sonochem.15(6),938–942 (2008).
  • Guderjan M, Elez-Martínez P, Knorr D. Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. Innov. Food Sci. Emerg. Technol.8(1),55–62 (2007).
  • Kaltschmitt M. Energie aus Biomasse: Grundlagen, Techniken und Verfahren (2nd Edition). Springer Publishing, Amsterdam, The Netherlands (2009).
  • Kinast J. Production of Biodiesels from Multiple Feedstocks and Properties of Biodiesels and Biodiesel Diesel Blends Final Report Report 1 in a Series of 6. US Department of Energy, Washington, DC, USA (2003).
  • Lam MK, Lee KT, Mohamed AR. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol. Adv.28(4),500–518 (2010).
  • Amigun B, Müller-Langer F, von Blottnitz H. Predicting the costs of biodiesel production in Africa: learning from Germany. Energy Sustain. Dev.12(1),5–21 (2008).
  • Belarbi EH, Molina E, Chisti Y. A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb. Technol.26(7),516–529 (2000).
  • Ehimen EA, Sun ZF, Carrington CG. Variables affecting the in situ transesterification of microalgae lipids. Fuel89(3),677–684 (2010).
  • D’Oca MGM, Viêgas CV, Lemoes JS et al. Production of FAMEs from several microalgal lipidic extracts and direct transesterification of the Chlorella pyrenoidosa. Biomass Bioenergy35(4),1533–1538 (2011).
  • Lewis T, Nichols PD, McMeekin TA. Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J. Microbiol. Methods43(2),107–116 (2000).
  • Xu R, Mi Y. Simplifying the process of microalgal biodiesel production through in situ transesterification technology. J. Am. Oil Chem. Soc.88(1),91–99 (2010).
  • Robinson PR. Petroleum processing overview. In: Practical Advances in Petroleum Processing. Hsu CS, Robinson PR (Eds). Springer, NY, USA, 1–78 (2006).
  • Huber GW, O’Connor P, Corma A. Processing biomass in conventional oil refineries: production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl. Catal. A Gen.329,120–129 (2007).
  • Huber GW, Corma A. Synergien zwischen bio- und ölraffinerien bei der herstellung von biomassetreibstoffen. Angew. Chem.119(38),7320–7338 (2007).
  • Donnis B, Egeberg RG, Blom P, Knudsen KG. Hydroprocessing of bio-oils and oxygenates to hydrocarbons. Understanding the reaction routes. Topics Catal.52(3),229–240 (2009).
  • Warwick G. Biofuels could be cleared for aircraft use. Int. News Fat Oils Relat. Mater.21(12),724–780 (2010).
  • Unknown. Analysis: algae and jatropha pilot planes take off. Chem. Eng.812,6 (2009).
  • Wagner S. EADS aircraft runs on algae biofuel. The Engineer, 21 July 2010.
  • Benson TJ, Miquez MS, Holmes WE, French WT, Hernandez R. Development of an ideal hydrotreating catalyst for the conversion of phospholipids to biofuels. Presented at: 21st International Symposium on Chemical Reaction Engineering. Philadelphia, PA, USA, 13–16 June 2010.
  • Müller-Langer F, Scholwin F, Kaltschmitt M. Biomethane for Transport – a Worldwide Overview. From Today’s to Tomorrow’s Biofuels – from the Biofuels Directive to Bio Based Transport Systems in 2020. Springer Publishing, Amsterdam, The Netherlands (2009).
  • Müller-Langer F, Majer S, Perimenis A. Biofuels – a technical, economic and environmental comparison. In: Encyclopedia of Sustainability Science and Technology. Springer Publishing, Amsterdam, The Netherlands (2012).
  • Ryckebosch E, Drouillon M, Vervaeren H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy35(5),1633–1645 (2011).
  • Golueke CG, Oswald WJ, Gotaas HB. Anaerobic digestion of algae. Appl. Microbiol.5(1),47–55 (1957).
  • Mussgnug JH, Klassen V, Schlüter A, Kruse O. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J. Biotechnol.150(1),51–56 (2010).
  • Yen H-W, Brune DE. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol.98(1),130–134 (2007).
  • Salerno M, Nurdogan Y, Lundquist T. Biogas production from algae biomass harvested at wastewater treatment ponds. Presented at: Proceedings of the 2009 Bioenergy Engineering Conference. Florida, USA, 11–14 October 2009.
  • Mann G, Schlegel M, Schumann R, Sakalauskas A. Biogas-conditioning with microalgae. Agron. Res.7(1),33–38 (2009).
  • Schmack Biogas AG. Effizienzsteigerung der Biogasnutzung durch Solarenergie: EBSIE Technikumphase, Abschlussbericht. Schmack Biogas AG, Schwandorf, Germany (2008).
  • Organization for Economic Cooperation and Development-FAO. Agricultural Outlook 2011–2020. Organization for Economic Cooperation and Development, Rome, Italy (2011).
  • Ettl H. Grundriss der Allgemeinen Algologie. Gustav Fischer Verlag, Stuttgart, Germany (1980).
  • Hirano A, Ueda R, Hirayama S, Ogushi Y. CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy22(2–3),137–142 (1997).
  • Shirai F, Kunii K, Sato C et al. Cultivation of microalgae in the solution from the desalting process of soy sauce waste treatment and utilization of the algal biomass for ethanol fermentation. World J. Microbiol. Biotechnol.14(6),839–842 (1998).
  • Choi SP, Nguyen MT, Sim SJ. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour. Technol.101(14),5330–5336 (2010).
  • Matsumoto M, Yokouchi H, Suzuki N, Ohata H, Matsunaga T. Saccharification of marine microalgae using marine bacteria for ethanol production. Appl. Biochem. Biotechnol.105(108),247–254 (2003).
  • Harun R, Danquah MK, Forde GM. Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol.85(2),199–203 (2010).
  • Tijmensen MJA, Faaij APC, Hamelinck CN, van Hardeveld MRM. Exploration of the possibilities for production of Fischer–Tropsch liquids and power via biomass gasification. Biomass Bioenergy23(2),129–152 (2002).
  • Dolan GA. Methanol production and utilization. In: Biomass to Biofuels: Strategies for Global Industries. John Wiley & Sons, Hoboken, NJ, USA, 435–455 (2010).
  • Brown DM, Bhatt BL, Hsiung TH, Lewnard JJ, Waller FJ. Novel technology for the synthesis of dimethyl ether from syngas. Catal. Today8(3),279–304 (1991).
  • Kopyscinski J, Schildhauer TJ, Biollaz SMA. Production of synthetic natural gas (SNG) from coal and dry biomass - a technology review from 1950 to 2009. Fuel89(8),1763–1783 (2010).
  • Kirubakaran V, Sivaramakrishnan V, Nalini R et al. A review on gasification of biomass. Renew. Sustain. Energy Rev.13(1),179–186 (2009).
  • Dahmen N, Dinjus E, Henrich E. The Karlsruhe process Bioliq® – synthetic fuels from the biomass. In: Renewable Energy: Sustainable Energy Concepts for the Future. Wengenmayr R, Bührke T (Eds). Wiley Publishing, IN, USA, 61–65 (2008).
  • Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y. Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal. Today45(1–4),399–404 (1998).
  • Li W, Li W, Liu H. The resource utilization of algae – preparing coal slurry with algae. Fuel89(5),965–970 (2010).
  • Bridgwater A. Fast Pyrolysis of Biomass: a Handbook. CPL Press, Thatcham, UK (1999).
  • Pan P, Hu C, Yang W et al. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour. Technol.101(12),4593–4599 (2010).
  • Miao X, Wu Q. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol.110(1),85–93 (2004).
  • Babich IV, van der Hulst M, Lefferts L et al. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenergy35(7),3199–3207 (2011).
  • Peng W, Wu Q, Tu P. Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorellaprotothecoides. J. Appl. Phycol.12(2),147–152 (2000).
  • Miao X, Wu Q, Yang C. Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrol.71(2),855–863 (2004).
  • Czernik S, Bridgwater AV. Overview of applications of biomass fast pyrolysis oil. Energy Fuels18(2),590–598 (2004).
  • Bridgwater AV, Meier D, Radlein D. An overview of fast pyrolysis of biomass. Org. Geochem.30(12),1479–1493 (1999).
  • Kruse A, Dinjus E. Hot compressed water as reaction medium and reactant: properties and synthesis reactions. J. Supercrit. Fluids39(3),362–380 (2007).
  • Yu SH, Cui XJ, Li LL et al. From starch to metal/carbon hybrid nanostructures: hydrothermal metal-catalyzed carbonization. Adv. Mater.16(18),1636–1640 (2004).
  • Titirici M-M, Thomas A, Antonietti M. Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J. Chem.31(6),787–789 (2007).
  • Glasner C, Deerberg G, Lyko H. Hydrothermale carbonisierung: ein überblick. Chem. Ingen. Tech.83(11),1932–1943 (2011).
  • Heilmann SM, Davis HT, Jader LR et al. Hydrothermal carbonization of microalgae. Biomass Bioenergy34(6),875–882 (2010).
  • Heilmann SM, Jader LR, Harned LA et al. Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products. Appl. Energy88(10),3286–3290 (2011).
  • Levine RB, Pinnarat T, Savage PE. Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuels24(9),5235–5243 (2010).
  • Toor SS, Rosendahl L, Rudolf A. Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy36(5),2328–2342 (2011).
  • Brown TM, Duan P, Savage PE. hydrothermal liquefaction and gasification of Nannochloropsis spp. Energy Fuels24(6),3639–3646 (2011).
  • Ross AB, Biller P, Kubacki ML et al. Hydrothermal processing of microalgae using alkali and organic acids. Fuel89(9),2234–2243 (2010).
  • Yu G, Zhang Y, Schideman L, Funk TL, Wang Z. Hydrothermal liquefaction of low lipid content microalgae into bio-crude oil. Trans. ASABE54(1),239–246 (2011).
  • Kruse A. Hydrothermal biomass gasification. J. Supercrit. Fluids47(3),391–399 (2009).
  • Azadi P, Farnood R. Review of heterogeneous catalysts for sub- and supercritical water gasification of biomass and wastes. Int. J. Hydro. Energy36(16),9529–9541 (2011).
  • Minowa T, Sawayama S. A novel microalgal system for energy production with nitrogen cycling. Fuel78(10),1213–1215 (1999).
  • Pacific Northwest National Laboratory. Catalytic Hydrothermal Gasification of Lignin-Rich Biorefinery Residues and Algae Final Report. US Department of Energy, Washington, DC, USA (2009).
  • Chakinala AG, Brilman DWF, Van Swaaij WPM, Kersten SRA. Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Indust. Eng. Chem. Res.49(3),1113–1122 (2010).
  • Stucki S, Vogel F, Ludwig C, Haiduc AG, Brandenberger M. Catalytic gasification of algae in supercritical water for biofuel production and carbon capture. Energy Environ. Sci.2(5),535 (2009).
  • Kruse A, Maniam P, Spieler F. Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 2. Model compounds. Ind. Eng. Chem. Res.46(1),87–96 (2011).
  • Kruse A, Krupka A, Schwarzkopf V, Gamard C, Henningsen T. Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 1. Comparison of different feedstocks. Ind. Eng. Chem. Res.44(9),3013–3020 (2011).
  • Minowa T, Yokoyama S-Y, Kishimoto M, Okakura T. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel74(12),1735–1738 (1995).
  • Griffith JW, Raymond DH. The first commercial supercritical water oxidation sludge processing plant. Waste Manag.22(4),453–459 (2002).
  • Calzavara Y, Joussot-Dubien C, Boissonnet G, Sarrade S. Evaluation of biomass gasification in supercritical water process for hydrogen production. Energy Conv. Manage.46(4),615–631 (2005).
  • Ueno Y, Kurano N, Miyachi S. Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J. Ferment. Bioeng.86(1),38–43 (1998).
  • John RP, Anisha GS, Nampoothiri KM, Pandey A. Micro and macroalgal biomass: a renewable source for bioethanol. Biores.Technol.102(1),186–193 (2011).
  • Gaffron H. Reduction of carbon dioxide with molecular hydrogen in green algae. Nature27(5),273–283 (1940).
  • Deng M-D, Coleman JR. Ethanol synthesis by genetic engineering in cyanobacteria. Appl. Environ. Microbiol.65(2),523–528 (1999).
  • Zhang L, Melis A. Probing green algal hydrogen production. Philos. Trans. R. Soc. Lond. B Biol. Sci.357(1426),1499–1511 (2002).
  • Tsygankov A, Kosourov S, Seibert M, Ghirardi ML. Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures. Int. J. Hydro. Energy27(11–12),1239–1244 (2002).
  • Vignais PM, Billoud B, Meyer J. Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev.25(4),455–501 (2001).
  • Hemschemeier A, Melis A, Happe T. Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynth. Res.102(2–3),523–540 (2009).
  • Akkerman I, Janssen M, Rocha J, Wijffels RH. Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int. J. Hydro. Energy27(11–12),1195–1208 (2002).
  • Trudewind CA, Wagner H-J. Planung einer “großtechnischen” anlage zur photobiologischen wasserstofferzeugung aus mikroalgen. In: Der 4. Deutsche Wasserstoff Congress 2008 – Tagungsband. Forschungszentrum, Jülich, Germany, 247–257 (2008).
  • Scoma A, Krawietz D, Faraloni C et al. Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant. J. Biotechnol.157(4),613–619 (2012).
  • Deng M-D, Coleman JR Ethanol synthesis by genetic engineering in cyanobacteria. Appl. Environ. Microbiol.65(2),523–528 (1999).
  • Dexter J, Fu P. Metabolic engineering of cyanobacteria for ethanol production. Energy Environ. Sci.2,857–864 (2009).
  • Benter MM, Gilmour IA, Arnoux L. Biomass-oil slurry fuels: an investigation into their preparation and formulation. Biomass Bioenergy12(4),253–261 (1997).
  • Scragg AH, Morrison J, Shales SW. The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme Microb. Technol.33(7),884–889 (2003).
  • Wijffels RH, Eppink M, Barbosa MJ. Biorefinery of microalgae. Presented at: 8th European Workshop Biotechnology of Microalgae. Potsdam, Germany, 7 June 2010.
  • Sun A, Davis R, Starbuck M et al. Comparative cost analysis of algal oil production for biofuels. Energy36(8),5169–5179 (2011).
  • ISTA. Oil World Statistics. ISTA/Mielke GmbH, Hamburg, Germany (2011).
  • Kröger M, Majer S, Kaltschmitt M. Balancing of algae production and its impact on climate factors. Presented at: International Algae Congress. Hamburg, Germany, 1 December 2009.

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.