370
Views
23
CrossRef citations to date
0
Altmetric
Perspective

Biofuels and CO2 neutrality: an opportunity

, &
Pages 413-426 | Published online: 09 Apr 2014

References

  • Jiang Z, Xiao T, Kuznetsov VL, Edwards PP. Turning carbon dioxide into fuel. Philos. Trans. R. Soc.368(1923),3343–3364 (2010).
  • Rogner H, Zhou D, Bradley R et al. Introduction. In: Climate change 2007: Mitigation. Cambridge University Press, Cambridge, UK (2007).
  • Moomaw W, Yamba F, Kamimoto M et al. Renewable energy and climate change. In: IPPC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, UK (2011).
  • Kerr T. Technology Roadmap. OECD, Paris, France (2010).
  • Anderson S, Newell R. Prospects for carbon capture and storage technologies. Ann. Rev. Environ. Resour.29,109–142 (2003).
  • Reith JH, Wijffels RH, Barten H. Bio-Methane and Bio-Hydrogen. Status and Perspectives of Biological Methane and Hydrogen Production. Dutch Hydrogen Foundation, The Hague, The Netherlands, 9–12 (2003).
  • Cherubini F, Peters GP, Berntsen T, Stromman AH, Hertwich E. CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. GCB Bioenergy3(5),413–426 (2011).
  • Xu Y, Isom L, Hanna MA. Adding value to carbon dioxide from ethanol fermentations. Bioresour. Technol.101(10),3311–3319 (2010).
  • Larson E. Biofuel Production Technologies: Status, Prospects and Implications for Trade and Development. United Nations Conference on Trade and Development, NY, USA (2008).
  • Kimble M, Pasdeloup M, Spencer C. Sustainable conversion technologies. In: Sustainable Bioenergy Development in UEMOA Member Countries. International Centre for Trade and Sustainable Development, Geneva, Switzerland, 45–56 (2008).
  • Sims R, Taylor M, Saddler J. From First to Second Generation Biofuel Technologies. OECD/IEA, Paris, France (2008).
  • Yu X. Biohydrogen production by the hyperthermophilic bacterium Thermotoga neapolitana. PhD Thesis, Graduate School of Clemson University, Clemson, SC, USA (2007).
  • Kongjan P, Min B, Angelidaki I. Biohydrogen production from xylose at extreme thermophilic temperatures (70°C) by mixed culture fermentation. Water Res.43(5),1414–1424 (2009).
  • Guo XM, Trably E, Latrille E, Carrere H, Steyer J-P. Hydrogen production from agricultural waste by dark fermentation: a review. Int. J. Hydrogen Energy.35(19),10660–10673 (2010).
  • Stal LJ, Moezelaar R. Fermentation in cyanobacteria. FEMS Microbiol. Rev.21(2),179–211 (1997).
  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res.48(8),3713–3729 (2009).
  • Hu Q, Sommerfeld M, Jarvis E et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J.54(4),621–639 (2008).
  • Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R. Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl. Microbiol. Biotechnol.91(3),471–490 (2011).
  • Chisti Y. Biodiesel from microalgae. Biotechnol. Adv.25(3),294–306 (2007).
  • Weyer K, Bush D, Darzins A, Willson B. Theoretical maximum algal oil production. Bioenergy Res.3(2),204–213 (2009).
  • Su WW, Li J, Xu N-S. State and parameter estimation of microalgal photobioreactor cultures based on local irradiance measurement. J. Biotechnol.105(1,2),165–178 (2003).
  • Marxen K, Vanselow KH, Lippemeier S, Hintze R, Ruser A, Hansen U-P. A photobioreactor system for computer controlled cultivation of microalgae. J. Appl. Phycol.17(6),535–549 (2005).
  • Eriksen Niels T. The technology of microalgal culturing. Biotechnol. Lett.30(9),1525–1536 (2008).
  • Xu L, Weathers PJ, Xiong X-R, Liu C-Z. Microalgal bioreactors: challenges and opportunities. Eng. Life Sci.9(3),178–189 (2009).
  • Kunjapur AM, Eldridge RB. Photobioreactor design for commercial biofuel production from microalgae. Ind. Eng. Chem. Res.49(8),3516–3526 (2010).
  • Kosourov S, Tsygankov A, Seibert M, Ghirardi ML. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnol. Bioeng.78(7),731–740 (2002).
  • Lindblad P, Christensson K, Lindberg P, Fedorov A, Pinto F, Tsygankov A. Photoproduction of H2 by wild-type Anabaena PCC 7120 and a hydrogen uptake deficient mutant: from laboratory experiments to outdoor culture. Int. J. Hydrogen Energy27(11–12),1271–1281 (2002).
  • Melis A. Green alga hydrogen production: progress, challenges and prospects. Int. J. Hydrogen Energy27(11–12),1217–1228 (2002).
  • Laurinavichene T, Tolstygina I, Tsygankov A. The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. J. Biotechnol.114(1–2),143–151 (2004).
  • Del Campo Jose A, Garcia-Gonzalez M, Guerrero Miguel G. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl. Microbiol Biotechnol.74(6),1163–1174 (2007).
  • Kurmayer R, Christiansen G. Use of Cyanobacteria for the Production of Ethanol and Natural Products Research. Institute for Limnology, Mondsee, Austria (2010).
  • Dexter J, Pengcheng F. Metabolic engineering of cyanobacteria for ethanol production. Energy Environ. Sci.2(8),857–864 (2009).
  • Nath K, Muthukumar M, Kumar A, Das D. Kinetics of two-stage fermentation process for the production of hydrogen. Int. J. Hydrogen Energy33(4),1195–1203 (2008).
  • Ozgur E, Afsar N, de Vrije T et al. Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus. J. Cleaner Prod.18(Suppl. 1),S23–S28 (2010).
  • Lo Y-C, Chen C-Y, Lee C-M, Chang J-S. Sequential dark-photo fermentation and autotrophic microalgal growth for high-yield and CO2-free biohydrogen production. Int. J. Hydrogen Energy35(20),10944–10953 (2010).
  • He D, Bultel Y, Magnin J-P, Willison JC. Kinetic analysis of photosynthetic growth and photohydrogen production of two strains of Rhodobacter capsulatus. Enzyme Microb. Technol.38(1–2),253–259 (2006).
  • Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol.100(9),2562–2568 (2009).
  • Zabut B, El-Kahlout K, Yuecel M, Gunduz U, Turker L, Eroglu I. Hydrogen gas production by combined systems of Rhodobacter sphaeroides O.U.001 and Halobacterium salinarum in a photobioreactor. Int. J. Hydrogen Energy31(11),1553–1562 (2006).
  • Smith RL, Kumar D, Zhang XK, Tabita FR, Van Baalen C. H2, N2, and O2 metabolism by isolated heterocysts from Anabaena sp. strain CA. J. Bacteriol.162(2),565–570 (1985).
  • Angermayr SA, Hellingwerf KJ, Lindblad P, Teixeira de Mattos MJ. Energy biotechnology with cyanobacteria. Curr. Opin. Biotechnol.20(3),257–263 (2009).
  • Schuetz K, Happe T, Troshina O et al. Cyanobacterial H2 production – a comparative analysis. Planta218(3),350–359 (2004).
  • Dutta D, De D, Chaudhuri S, Bhattacharya SK. Hydrogen production by cyanobacteria. Microb. Cell Fact.4,36 (2005).
  • Bayless DJ, Kremer G, Vis M et al. Photosynthetic CO2 mitigation using a novel membrane-based photobioreactor. J. Environ. Eng. Manag.16(4),209–215 (2006).
  • Rittmann S, Seifert A, Herwig C. Quantitative analysis of media dilution rate effects on Methanothermobacter marburgensis grown in continuous culture on H2 and CO2. Biomass Bioenerg.36(12),293–301 (2012).
  • Han S-K, Shin H-S. Performance of an innovative two-stage process converting food waste to hydrogen and methane. J. Air Waste Manage. Assoc.54(2),242–249 (2004).
  • Han SK, Kim SH, Kim HW, Shin HS. Pilot-scale two-stage process: a combination of acidogenic hydrogenesis and methanogenesis. Water Sci. Technol.52(1–2),131–138 (2005).
  • Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol.6(8),579–591 (2008).
  • Liu Y, Whitman WB. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. NY Acad. Sci.1125,171–189 (2008).
  • von Stockar U, Liu JS. Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochim. Biophys. Acta Bioenergetics1412(3),191–211 (1999).
  • von Stockar U, Marison IW, Liu JS. Endothermic microbial growth: a calorimetric investigation of an extreme case of entropy-driven microbial growth. Pure Appl. Chem.72(10),1835–1838 (2000).
  • von Stockar U, Valentinotti S, Marison I, Cannizzaro C, Herwig C. Know-how and know-why in biochemical engineering. Biotechnol. Adv.21(5),417–430 (2003).
  • Eisentraut A. Sustainable Production of Second-Generation Biofuels. OECD, Paris, France (2010).
  • European Renewable Energy Council. Bioethanol Production and Use. European Biomass Industry Association, Brussels, Belgium (2002).
  • Jin Y-S, Alper H, Yang Y-T, Stephanopoulos G. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol.71(12),8249–8256 (2005).
  • Sonderegger M, Schuemperli M, Sauer U. Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl. Environ. Microbiol.70(5),2892–2897 (2004).
  • Chum H, Faaij A, Moreira J et al.Bioenergy in a Changing Climate: Key Findings of the IPPC Special Report on Renewable Energy Sources (SRREN) and Climate Change Mitigation. National Renewable Energy Laboratory, Golden, CO, USA (2011).
  • Warner E, Heath G, Mann M. Biopower Life Cycle Assessment (LCA) Harmonization: Focus on Greenhouse Gas (GHG) Emissions. National Renewable Energy Laboratory, Golden, CO, USA (2010).
  • Warner E, Heath G, O’Donoughue P. Harmonization of Energy Generation Life Cycle Assessments (LCA). National Renewable Energy Laboratory, Golden, CO, USA (2010).
  • Wilson TO, McNeal FM, Spatari S, G. Abler D, Adler PR. Densified biomass can cost-effectively mitigate greenhouse gas emissions and address energy security in thermal applications. Environ. Sci. Technol.3(2),204–213 (2009).
  • Durrett TP, Benning C, Ohlrogge J. Plant triacylglycerols as feedstocks for the production of biofuels. Plant J.54(4),593–607 (2008).
  • Wahlen BD, Willis RM, Seefeldt LC. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour. Technol.102(3),2724–2730 (2011).
  • Hasheminejad M, Tabatabaei M, Mansourpanah Y, Far MK, Javani A. Upstream and downstream strategies to economize biodiesel production. Bioresour. Technol.102(2),461–468 (2010).
  • Bartacek J, Zabranska J, Lens PNL. Developments and constraints in fermentative hydrogen production. Biofuels Bioprod. Bioref.1(3),201–214 (2007).
  • Hallenbeck PC, Ghosh D. Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol.27(5),287–297 (2009).
  • Manish S, Banerjee R. Comparison of biohydrogen production processes. Int. J. Hydrogen Energy33(1),279–286 (2008).
  • Akakayah W, Kalil M, Kadhum A, Jahim J, SZS J, Alauj N. Bio-hydrogen production using a two-stage fermentation process. Park J. Biol. Sci.12(22),1462–1467 (2009).
  • Liu B-F, Ren N-Q, Xie G-J, Ding J, Guo W-Q, Xing D-F. Enhanced bio-hydrogen production by the combination of dark- and photo-fermentation in batch culture. Bioresour. Technol.101(14),5325–5329 (2010).
  • Nath K, Das D. Amelioration of biohydrogen production by two-stage fermentation process. Ind. Biotechnol.2(1),44–47 (2006).
  • Tao Y, Chen Y, Wu Y, He Y, Zhou Z. High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int.J. Hydrogen Energy32(2),200–206 (2007).
  • Robertson DE, Jacobson SA, Morgan F, Berry D, Church GM, Afeyan NB. A new dawn for industrial photosynthesis. Photosynth. Res.107(3),269–277 (2011).
  • Sakakura T, Choi J-C, Yasuda H. Transformation of carbon dioxide. Chem. Rev.107(6),2365–2387 (2007).
  • King D. The Future of Industrial Biorefineries. World Economic Forum, Geneva, Switzerland (2010).
  • Liu X, Zhu Y, Yang S-T. Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol. Prog.22(5),1265–1275 (2006).
  • Sombilla M. An Overview and Strategic Framework for Biofuel Development. Asian Development Bank, Manila, Philippines (2009).
  • Herwig C, Marison I, Von Stockar U. On-line stoichiometry and identification of metabolic state under dynamic process conditions. Biotechnol. Bioeng.75(3),345–354 (2001).
  • Herwig C, von Stockar U. A small metabolic flux model to identify transient metabolic regulations in Saccharomyces cerevisiae. Bioprocess Biosyst. Eng.24(6),395–403 (2002).
  • Herwig C, von Stockar U. Quantitative comparison of transient growth of Saccharomyces cerevisiae, Saccharomyces kluyveri, and Kluyveromyces lactis. Biotechnol. Bioeng.81(7),837–847 (2003).
  • Jazini M, Herwig C. Effect of post-induction substrate oscillation on recombinant alkaline phosphatase production expressed in Escherichia coli. J. Biosci. Bioeng.112(6),606–610 (2011).
  • Herwig C. The analytical challenge in QbD- from data to information and to knowledge-from (bioprocess) development to manufacturing. In: Quality by Design – Putting Theory Into Practice. Schmitt S (Ed.). PDA/DHI Publications, NY, USA, 163–194 (2001).

▪ Patents

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.