722
Views
71
CrossRef citations to date
0
Altmetric
Review

The production of duckweed as a source of biofuels

, , &
Pages 589-601 | Published online: 09 Apr 2014

References

  • Hillman WS, Culley DD. The uses of duckweed. Am. Sci.66(4),442–451 (1978).
  • Stomp AM. The duckweed: a valuable plant for biomanufacturing. Biotechnol. Annu. Rev.11,69–99 (2005).
  • Landolt E. Biosystematic Investigation on the Family of Duckweeds: the Family of Lemnaceae – a Monograph Study. Veröffentlichungen des Geobotanischen Institutes ETH, Stiftung Rubel, Zurich, Switzerland (1986).
  • Landesman L, Fedler C, Duan R. Plant nutrient phytoremediation using duckweed. In: Eutrophication: Causes, Consequences and Control. Ansari AA, Gill SS, Lanza GR, Rast W (Eds). Springer-Verlag, Berlin, Germany, 341–354 (2011).
  • Aziz A. Illustrated account of Wolffia microscopica (Griff.) Kurz (Lemnaceae) from Sirajganj, Bangladesh. Bangladesh J. Botany30(2),149–151 (2001).
  • Landolt E, Kandeler R. The Family of Lemnaceae – A Monographic Study. Phytochemistry, Physiology, Application, Bibliography. Veröffentlichungen des Geobotanischen Institutes ETH, Stiftung Rubel, Zurich, Switzerland (1987).
  • Cheng J, Landesman L, Bergmann BA, Classen JJ, Howard JW, Yamamoto YT. Nutrient removal from swine lagoon liquid by Lemna minor 8627. Trans. ASAE45(4),1003–1010 (2002).
  • Tillerg E, Holmvall M, Ericsson T. Growth cycles in Lemna gibba cultures and their effects on growth rate and ultrastructure. Physiol. Plant.46(1),5–12 (1979).
  • Reid MS, Bieleski RL. Response of Spirodela oligorrhiza-M to phosphorus deficiency. Plant Physiol.46(4),609–613 (1970).
  • Cui W, Xu J, Cheng JJ, Stomp AM. Starch accumulation in duckweed for bioethanol production. Biol. Eng.3(4),187–197 (2011).
  • Xu J, Cui W, Cheng JJ, Stomp AM. Production of high-starch duckweed and its conversion to bioethanol. Biosystems Eng.110(2),67–72 (2011).
  • Dekock PC, Vaughan D, Hall A. Effect of abscisic acid and benzyle adenine on the inorganic and organic composition of the duckweed. New Phytol.81(3),505–511 (1978).
  • McLaren JS, Smith H. The effect of abscisic acid on growth, photosynthetic rate and carbohydrate metabolism in Lemna minor L. New Phytol.76(1),11–20 (1976).
  • Tasseron-De-Jong J, Veldstra H. Investigations on cytokinins. II. Interaction of light and cytokinins as studied in Lemna-minor-M. Physiol. Plant24(2),239–241 (1971).
  • McCombs PJA, Ralph RK. Protein, nucleic acid and starch metabolism in the duckweed, Spirodela oligorrhiza, treated with cytokinins. Biochem. J.129(2),403–417 (1972).
  • Lin Y, Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol.69(9),627–642 (2006).
  • El-Shafai SA, El-Gohary FA, Nasr FA, van der Steen NP, Gijzen HJ. Nutrient recovery from domestic wastewater using a UASB-duckweed ponds system. Bioresour. Technol.98(4),798–807 (2007).
  • Nasr FA, Doma HS, Nassar HF. Treatment of domestic wastewater using an anaerobic baffled reactor followed by a duckweed pond for agricultural purpose. Environmentalist29(3),270–279 (2009).
  • Bergmann BA, Cheng J, Classen J, Stomp A-M. Nutrient removal from swine lagoon effluent by duckweed. Trans. ASAE43(2),263–269 (2000).
  • Edwards P, Hassan MS, Chao CH, Pacharaprakiti C. Cultivation of duckweeds in septage-loaded earthen ponds. Bioresour. Technol.40(2),109–117 (1992).
  • Vermaat JE, Hanif MK. Performance of common duckweed species (Lemnaceae) and the waterfern Azolla filiculoides on different types of waste water. Water Res.32(9),2569–2576 (1998).
  • Bergmann BA, Cheng J, Classen J, Stomp A-M. In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Bioresour. Technol.73(1),13–20 (2000).
  • Oron G. Duckweed culture for wastewater renovation and biomass production. Agric. Water Manage.26(1),27–40 (1994).
  • Warren KS. Ammonia toxicity and pH. Nature195(4836),47–49 (1962).
  • Vines HM, Wedding RT. Some effects of ammonia on plant metabolism and a possible mechanism for ammonia toxicity. Plant Physiol.35(6),820–825 (1960).
  • Ingermarsson B, Oscarsson P, Ugglas MA, Larsson CM. Nitrogen utilization in Lemna, III. Short term effects of ammonium on nitrate uptake and nitrate reduction. Plant Physiol.85(3),865–867 (1987).
  • Caicedo JR, van der Steen NP, Arce O, Gijzen HJ. Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodela polyrrhiza). Water Res.34(15),3829–3835 (2000).
  • Körner S, Das SK, Veenstra S, Vermaat JE. The effect of pH variation at the ammonium/ammonia equilibrium in wastewater and its toxicity to Lemna gibba. Aquat. Bot.71(1),71–78 (2001).
  • Jayashree M, Muthukumar B, Arockiasamy DI. Efficiency of Spirodela polyrhiza (L.) Schleiden in absorbing and utilizing different forms of nitrogen. J. Environ. Biol.17(3),227–233 (1996).
  • Aslam M, Oaks A, Huffaker RC. Effect of light and glucose on the induction of nitrate in etiolated barley leaves. Plant Physiol.58(4),588–591 (1976).
  • Xu J, Shen G. Growing duckweed in swine wastewater for nutrient recovery and biomass production. Bioresour. Technol.102(2),848–853 (2011).
  • Skillicorn P, Spira W, Journey W. Duckweed Aquaculture. The International Bank for Reconstruction and Development, Washington, DC, USA (1993).
  • Farber E, Kandeler R. Phytochrome effect on the ethylene production after overcrowding in Spirodela (Lemnaceae). Phyton Ann. Rei Bot. Austria30(1),89–91 (1990).
  • Bal Krishna KC, Polprasert C. An integrated kinetic model for organic and nutrient removal by duckweed-based wastewater treatment (DUBWAT) system. Ecol. Eng.34(3),243–250 (2008).
  • Xu J, Shen G. Effects of harvest regime and water depth on nutrient recovery from swine wastewater by growing Spirodela oligorrhiza. Water Environ. Res.83(11),2049–2056 (2011).
  • Xu J, Cheng JJ, Stomp AM. Nutrient removal from swine wastewater by growing duckweed: a pilot study. Trans. ASABE55(1),1–5 (2012).
  • Landesman L, Parker NC, Fedler CB, Konikoff M. Modeling duckweed growth in wastewater treatment systems. Livest. Res. Rural Dev.17(6),61 (2005).
  • Scott SA, Davey MP, Dennis JS et al. Biodiesel from algae: challenges and prospects. Curr. Opin. Biotechnol.21(3),277–286 (2010).
  • Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O. Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol.43(17),6475–6481 (2009).
  • Chisti Y. Biodiesel from microalgae. Biotechnol. Adv.25(3),294–306 (2007).
  • Parrish DJ, Fike JH. The biology and agronomy of switchgrass for biofuels. Crit. Rev. Plant Sci.24(5–6),423–459 (2005).
  • Sanderson MA, Adler PR, Boateng AA, Casler MD, Sarath G. Switchgrass as a biofuels feedstock in the USA. Can. J. Plant Sci.86(5),1315–1325 (2006).
  • Schmer MR, Vogel KP, Mitchell RB, Perrin RK. Net energy of cellulosic ethanol from switchgrass. Proc. Natl Acad. Sci. USA105(2),464–469 (2008).
  • Muir JP, Lambert BD, Greenwood A, Lee A, Riojas A. Comparing repeated forage Bermuda grass harvest data to single, accumulated bioenergy feedstock harvests. Bioresour. Technol.101(1),200–206 (2010).
  • Holtzapple MT, Ripley EP, Nikolaou M. Saccharification, fermentation, and protein recovery from low-temperature AFEX-treated coastal Bermuda grass. Biotechnol. Bioeng.44(9),1122–1131 (1994).
  • Hill GM, Gates RN, Burton GW. Forage quality and grazing steer performance from Tifton 85 and Tifton 78 Bermuda grass pastures. J. Anim. Sci.71(12),3219–3225 (1993).
  • Lewandowski I, Clifton-Brown JC, Andersson B et al. Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agron. J.95(5),1274–1280 (2003).
  • Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy19(4),209–227 (2000).
  • Himken M, Lammet J, Neukirchen D, Czypionka-Kause U, Olfs HO. Cultivation of Miscanthus under west European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil189(1),117–126 (1997).
  • Aylott MJ, Casella E, Tubby I, Street NR, Smith P, Taylor G. Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol.178(4),358–370 (2008).
  • Laureysens I, Pellis A, Willems J, Ceulemans R. Growth and production of a short rotation coppice culture of poplar. III. Second rotation results. Biomass Bioenergy29(1),10–21 (2005).
  • Laureysens I, Bogaert J, Blust R, Ceulemans R. Biomass production of 17 poplar clones in a short-rotation coppice culture on a waste disposal site and its relation to soil characteristics. For. Ecol. Manage.187(2–3),295–309 (2004).
  • Wilkinson JM, Evans EJ, Bilsborrow PE, Wright C, Hewison WO, Pilbeam DJ. Yield of willow cultivars at different planting densities in a commercial short rotation coppice in the north of England. Biomass Bioenergy31(7),469–474 (2007).
  • Stolarski MJ, Szczukowski S, Tworkowski J, Wróblewska H, Krzyżaniak. Short rotation willow coppice biomass as an industrial and energy feedstock. Ind. Crops Prod.33(1),217–223 (2011).
  • Jacobs DL. An ecological life-history of Spirodela polyrrhiza (greater duckweed) with emphasis on the turion phase. Ecol. Monogr.17(4),437–469 (1947).
  • Pankey RD, Draudt HN, Desrosier NW. Characterization of the starch of Spirodela polyrrhiza.J. Food Sci.30(4),627–631 (1965).
  • White HL, Templeman WG. The interaction of factors in the growth of Lemna. X: the interaction of nitrogen and light intensity in relation to respiration. Ann. Bot.1(1),191–204 (1937).
  • Appenroth KJ. Co-action of temperature and phosphate in inducing trion formation in Spirodela polyrhiza (great duckweed). Plant Cell Environ.25(9),1079–1085 (2005).
  • Thorsteinsson B, Tillberg JE. Carbohydrate partitioning, photosynthesis and growth in Lemna gibba G3. II. Effects of phosphorus limitation. Physiol. Plant71(3),271–276 (1987).
  • Ciereszko I, Barbachowska A. Sucrose metabolism in leaves and roots of bean (Phaseolus vulgaris L.) during phosphate deficiency. J. Plant Physiol.156(5–6),640–644 (2000).
  • Cheng JJ, Stomp AM. Growing duckweed to recover nutrients from wastewater and for production of fuel ethanol and animal feed. Clean Soil Air Water37(1),17–26 (2009).
  • Dekock PC, Vaughan D, Hall A. Effect of abscisic acid and benzyle adenine on the inorganic and organic composition of the duckweed. New Phytol.81(3),505–511 (1978).
  • McLaren JS, Smith H. The effect of abscisic acid on growth, photosynthetic rate and carbohydrate metabolism in Lemna minor L. New Phytol.76(1),11–20 (1976).
  • Janas KM, Osiecka R, Zon J. Growth-retarding effect of 2-aminoindan-2-phosphonic acid on Spirodela punctata. J. Plant Growth Regul.17(3),189–172 (1998).
  • Abbas HK, Gronwald JW, Plaisance KL, Paul RN, Lee YW. Histone deacetylase activity and phytotoxic effects following exposure of duckweed (Lemna pausicostata L.) to apicidin and HC-toxin. Biochem. Cell Biol.91(12),1141–1148 (2001).
  • Appenroth KJ, Krech K, Keresztes A, Fischer W, Koloczek H. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Chemosphere78(3),216–223 (2010).
  • Chaiprapat S, Cheng JJ, Classen JJ, Liehr SK. Role of internal nutrient storage in duckweed growth for swine wastewater treatment. Trans. ASAE48(6),2247–2258 (2005).
  • Renewable Fuels Association. Climate of Opportunity. 2010 Ethanol Industry Outlook. Washington, DC, USA (2010).
  • Patzek TW. A statistical analysis of the theoretical yield of ethanol from corn starch. Nat. Resour. Res.15(3),205–212 (2006).
  • Appenroth KJ, Hertel W, Jungnickel F, Augsten H. Influence of nutrient deficiency and light on turion formation in Spirodela polyrhiza (L.) Schleiden. Biochem. Physiol. Pflanz.184(5–6),395–403 (1989).
  • Appenroth KJ, Nickel G. Turion formation in Spirodela polyrhiza: the environmental signals that induce the developmental process in nature. Physiol. Plant138(3),312–320 (2010).
  • Smith RA. Harvesting Duckweed by Skimming. North Carolina State University, Raleigh, NC, USA (2003).
  • Xu J, Cheng JJ, Stomp AM. Growing Spirodela polyrrhiza in swine wastewater for the production of animal feed and fuel ethanol: a pilot study. Clean Soil Air Water40(7),760–765 (2012).
  • Megazyme International (Ireland) Ltd. Megazyme Total Starch Assay Procedure (Amyloglucosidase/α-amylase method). AA/AMG 11/01, AOAC Method 996.11, AACC Method 76.13, ICC Standard Method No. 168. Megazyme International, Wicklow, Ireland (2008).
  • Sluiter A, Sluiter J. Determination of Starch in Solid Biomass Samples by HPLC. Laboratory Analytical Procedure. NREL/TP-510e42624. National Renewable Energy Laboratory, Golden, CO, USA (2005).
  • Kaundun SS, Lebreton P, Bailly A. Discrimination and identification of coastal Douglas-fir clones using needle flavonoid fingerprints. Biochem. Syst. Ecol.28(8),779–791 (2000).
  • Wang W, Wu Y, Yan Y, Ermakova M, Kerstetter R, Messing J. DNA barcoding of the Lemnaceae, a family of aquatic monocots. BMC Plant Biol.10(1),205 (2010).
  • Zhou X, Xu J, Wang Z, Cheng JJ, Li R, Qu R. Dilute sulfuric acid pretreatment of transgenic switchgrass for sugar production. Bioresour. Technol.104(1),823–827 (2012).
  • Xu J, Cheng JJ, Sharma-Shivappa RR, Burns JC. Lime pretreatment of switchgrass at mild temperatures for ethanol production. Bioresour. Technol.101(8),2900–2903 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.