959
Views
103
CrossRef citations to date
0
Altmetric
Review

Hydrothermal processing of algal biomass for the production of biofuels and chemicals

&
Pages 603-623 | Published online: 09 Apr 2014

References

  • Posten C, Schaub G. Microalgae and terrestrial biomass as source for fuels – a process view. J. Biotechnol.142(1),64–69 (2009).
  • Chisti Y. Biodiesel from microalgae. Biotechnol. Adv.25(3),294–306 (2007).
  • Pienkos PT, Darzins A. The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod. Bioref.3(4),431–440 (2009).
  • Ross AB, Jones JM, Kubacki ML, Bridgeman T. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol.99(14),6494–6504 (2008).
  • Anastasakis K, Saunders H, Jones JM, Ross AB. Predictive fouling behaviour of seaweed ash during combustion. Proc. Bioten Conf. Biomass Bioenerg. Biofuels 2010778–785 (2011).
  • Alves A, Caridade SG, Mano JF, Sousa RA, Reis RL. Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydr. Res.345(15),2194–2200 (2010).
  • Gupta S, Abu-Ghannam N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov. Food Sci. Emerg. Technol.12(4),600–609 (2011).
  • Brennan L, Owende P. Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev.14(2),557–577 (2009).
  • Wilkie AC, Evans JM. Aquatic plants: an opportunity feedstock in the age of bioenergy. Biofuels1(2),311–321 (2010).
  • Xiu SN, Shahbazi A, Croonenberghs J, Wang LJ. Oil production from duckweed by thermochemical liquefaction. Energ. Source Part A32(14),1293–1300 (2010).
  • Catallo WJ, Shupe TF, Eberhardt TL. Hydrothermal processing of biomass from invasive aquatic plants. Biomass Bioenerg.32(2),140–145 (2008).
  • Xu L, Brilman DWF, Withag JAM, Brem G, Kersten S. Assessment of a dry and a wet route for the production of biofuels from microalgae: energy balance analysis. Bioresour. Technol.102(8),5113–5122 (2011).
  • Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma158(3–4),443–449 (2010).
  • Levine RB, Pinnarat T, Savage PE. Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuels24(9),5235–5243 (2010).
  • Patil PD, Gude VG, Mannarswamy A et al. Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour. Technol.102(1),118–122 (2011).
  • Matsui T, Nishihara A, Ueda C, Ohtsuki M, Ikenaga N, Suzuki T. Liquefaction of micro-algae with iron catalyst. Fuel76(11),1043–1048 (1997).
  • Ikenaga N-O, Ueda C, Matsui T, Ohtsuki M, Suzuki T. Co-liquefaction of micro algae with coal using coal liquefaction catalysts. Energy Fuels15(2),350–355 (2001).
  • Peterson AA, Vogel F, Lachance RP et al. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ. Sci.1(1),32–65 (2008).
  • Zhang L, Xu C, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass. Energ. Convers. Manag.51(5),969–982 (2010).
  • Garcia Alba L, Torri C, Samorì C et al. Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy Fuels26(1),642–657 (2012).
  • Chakinala AG, Brilman DWF, van Swaaij WPM, Kersten SRA. Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind. Eng. Chem. Res.49(3),1113–1122 (2009).
  • Kruse A, Dinjus E. Hot compressed water as reaction medium and reactant: properties and synthesis reactions. J. Supercrit. Fluids39(3),362–380 (2007).
  • Kruse A, Dinjus E. Hot compressed water as reaction medium and reactant: 2. Degradation reactions. J. Supercrit. Fluids41(3),361–379 (2007).
  • Elliott DC. Hydrothermal processing. In: Thermochemical Processing of Biomass. John Wiley & Sons, Ltd, Hoboken, NJ, USA, 200–231 (2011).
  • Toor SS, Rosendahl L, Rudolf A. Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy36(5),2328–2342 (2011).
  • Adams JMM, Ross AB, Anastasakis K et al. Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion. Bioresour. Technol.102(1),226–234 (2011).
  • Ross AB, Biller P, Kubacki ML, Li H, Lea-Langton A, Jones JM. Hydrothermal processing of microalgae using alkali and organic acids. Fuel89(9),2234–2243 (2010).
  • Jena U, Vaidyanathan N, Chinnasamy S, Das KC. Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass. Bioresour. Technol.102(3),3380–3387 (2011).
  • Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem.41(6),1301–1310 (2009).
  • Libra JA, Ro KS, Kammann C et al. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels2(1),71–106 (2010).
  • Hu B, Wang K, Wu L, Yu S-H, Antonietti M, Titirici M-M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater.22(7),813–828 (2010).
  • Specht FBH. Die anwendung hoher drucke bei chemischen vorgängen und eine nachbildung des entstehungsprozesses der steinkohle. Verlag Wilhelm Knapp Halle an der Saale20(8),260 (1913).
  • Titirici M-M, Thomas A, Antonietti M. Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem New J. Chem.31(6),787–789 (2007).
  • Sevilla M, Fuertes AB. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. Eur. J.15(16),4195–4203 (2009).
  • Sevilla M, Fuertes AB. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon47(9),2281–2289 (2009).
  • Heilmann SM, Davis HT, Jader LR et al. Hydrothermal carbonization of microalgae. Biomass Bioenerg.34(6),875–882 (2010).
  • Heilmann SM, Jader LR, Harned LA et al. Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products. Appl. Energy88(10),3286–3290 (2011).
  • Yu G, Zhang Y, Schideman L, Funk T, Wang Z. Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy Environ. Sci.4(11),4587–4595 (2011).
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng.101(2),87–96 (2006).
  • Anastasakis K, Ross AB. Hydrothermal liquefaction of the brown macro-alga Laminaria saccharina: effect of reaction conditions on product distribution and composition. Bioresour. Technol.102(7),4876–4883 (2011).
  • Dote Y, Sawayama S, Inoue S, Minowa T, Yokoyama S-Y. Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel73(12),1855–1857 (1994).
  • Inoue S, Dote Y, Sawayama S, Minowa T, Ogi T, Yokoyama S-Y. Analysis of oil derived from liquefaction of Botryococcus braunii. Biomass Bioenerg.6(4),269–274 (1994).
  • Minowa T, Yokoyama S-Y, Kishimoto M, Okakura T. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel74(12),1735–1738 (1995).
  • Sawayama S, Minowa T, Yokoyama SY. Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenerg.17(1),33–39 (1999).
  • Jena U, Das KC, Kastner JR. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour. Technol.102(10),6221–6229 (2011).
  • Brown TM, Duan P, Savage PE. Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels24(6),3639–3646 (2010).
  • Yu G, Zhang Y, Schideman L, Funk TL, Wang ZG. Hydrothermal liquefaction of low lipid content microalgae into biocrude oil. Am. Soc. Agric. Biol. Eng.54(1),239–246 (2011).
  • Zhou D, Zhang L, Zhang S, Fu H, Chen J. Hydrothermal liquefaction of macroalgae Enteromorpha prolifera to bio-oil. Energy Fuels24(7),4054–4061 (2010).
  • Torri C, Garcia-Alba L, Samorì C, Fabbri D, Brilman DWF. Hydrothermal treatment (HTT) of microalgae: detailed molecular characterization of HTT oil in view of HTT mechanism elucidation. Energy Fuels26(1),658–671 (2012).
  • Biller P, Ross AB. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour. Technol.102(1),215–225 (2011).
  • Chakraborty M, Miao C, McDonald A, Chen S. Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana using a unique sequential hydrothermal extraction technology. Fuel95,63–70 (2012).
  • Miao C, Chakraborty M, Chen S. Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process. Bioresour. Technol.110,617–627 (2012).
  • Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour. Technol.109,178–187 (2012).
  • Yang YF, Feng CP, Inamori Y, Maekawa T. Analysis of energy conversion characteristics in liquefaction of algae. Resour. Conserv. Recy.43(1),21–33 (2004).
  • Zou S, Yulong W, Mingde Y, Kaleem I, Chun L, Tong J. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy35(12),5406–5411 (2010).
  • Zou S, Wu Y, Yang M, Li C, Tong J. Thermochemical catalytic liquefaction of the marine microalgae Dunaliella tertiolecta and characterization of bio-oils. Energy Fuels23(7),3753–3758 (2009).
  • Jena U, Das KC, Kastner JR. Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis. Appl. Energy98,368–375 (2012).
  • Savage PE. A perspective on catalysis in sub- and supercritical water. J. Supercrit. Fluids47(3),407–414 (2009).
  • Duan P, Savage PE. Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Ind. Eng. Chem. Res.50(1),52–61 (2011).
  • Biller P, Riley R, Ross AB. Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids. Bioresour. Technol.102(7),4841–4848 (2011).
  • Waldner MH, Krumeich F, Vogel F. Synthetic natural gas by hydrothermal gasification of biomass: selection procedure towards a stable catalyst and its sodium sulfate tolerance. J. Supercrit. Fluids43(1),91–105 (2007).
  • Calzavara Y, Joussot-Dubien C, Boissonnet G, Sarrade S. Evaluation of biomass gasification in supercritical water process for hydrogen production. Energy Convers. Manag.46(4),615–631 (2005).
  • Biller P, Ross AB, Skill SC et al. Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res.1(1),70–76 (2012).
  • Haiduc A, Brandenberger M, Suquet S, Vogel F, Bernier-Latmani R, Ludwig C. SunCHem: an integrated process for the hydrothermal production of methane from microalgae and CO2 mitigation. J. Appl. Phycol.21(5),529–541 (2009).
  • Minowa T, Sawayama S. A novel microalgal system for energy production with nitrogen cycling. Fuel78(10),1213–1215 (1999).
  • Stucki S, Vogel F, Ludwig C, Haiduc AG, Brandenberger M. Catalytic gasification of algae in supercritical water for biofuel production and carbon capture. Energy Environ. Sci.2(5),535–541 (2009).
  • Guan Q, Savage PE, Wei C. Gasification of alga Nannochloropsis sp. in supercritical water. J. Supercrit. Fluids61,139–145, (2012).
  • Resende FLP, Savage PE. Effect of metals on supercritical water gasification of cellulose and lignin. Ind. Eng. Chem. Res.49(6),2694–2700 (2010).
  • Resende FLP, Savage PE. Expanded and updated results for supercritical water gasification of cellulose and lignin in metal-free reactors. Energy Fuels23(12),6213–6221 (2009).
  • Schumacher M, Yaník J, Sínağ A, Kruse A. Hydrothermal conversion of seaweeds in a batch autoclave. J. Supercrit. Fluids58(1),131–135 (2011).
  • Yanik J, Ebale S, Kruse A, Saglam M, Yüksel M. Biomass gasification in supercritical water: part 1. Effect of the nature of biomass. Fuel86(15),2410–2415 (2007).
  • Tsukahara K, Kimura T, Minowa T et al. Microalgal cultivation in a solution recovered from the low-temperature catalytic gasification of the microalga. J. Biosci. Bioeng.91(3),311–313 (2001).
  • Bordons A, Jofre J. Extracellular adsorption of nickel by a strain of Pseudomonas sp. Enzyme Microbial Technol.9(12),709–713 (1987).
  • Spencer DF, Nichols LH. Free nickel ion inhibits growth of two species of green algae. Environ. Pollution Series A Ecol. Biol.31(2),97–104 (1983).
  • Scragg AH. The effect of phenol on the growth of Chlorella vulgaris and Chlorella VT-1. Enzyme Microbial Technol.39(4),796–799 (2006).
  • Bosma R, Miazek K, Willemsen SM, Vermuë MH, Wijffels RH. Growth inhibition of Monodus subterraneus by free fatty acids. Biotechnol. Bioeng.101(5),1108–1114 (2008).
  • Ross AB, Biller P, Hall C. Catalytic hydrothermal processing of microalgae with integrated nutrient recycling. In: 18th European Biomass Conference and Exhibition. European Biomass Conference and Exhibition Proceedings, Berlin, Germany, 825–829 (2011).
  • Cordell D, Drangert J-O, White S. The story of phosphorus: global food security and food for thought. Global Environ. Change19(2),292–305 (2009).
  • Stephens E, Ross IL, Mussgnug JH et al. Future prospects of microalgal biofuel production systems. Trends Plant Sci.15(10),554–564 (2010).
  • Perry RH, Green DW. Perry’s Chemical Engineers’ Handbook (7th Edition). McGraw-Hill, NY, USA (1997).
  • Wagner W, Pruss A. The IAPWS Formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data31(2),387–535 (2002).
  • Uematsu M, Frank EU. Static dielectric constant of water and steam. J. Phys. Chem. Ref. Data9(4),1291–1306 (1980).
  • Bandura AV, Lvov SN. The ionization constant of water over wide ranges of temperature and density. J. Phys. Chem. Ref. Data35(1),15–30 (2006).
  • Vardon DR, Sharma BK, Scott J et al. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresour. Technol.102(17),8295–8303 (2011).
  • Li D, Chen L, Xu D et al. Preparation and characteristics of bio-oil from the marine brown alga Sargassum patens C. Agardh. Bioresour. Technol.104,737–742 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.