621
Views
49
CrossRef citations to date
0
Altmetric
Special Report

Heterogeneous catalytic oxidation of lignin into value-added chemicals

, &
Pages 155-166 | Published online: 09 Apr 2014

References

  • Parikka M. Global biomass fuel resources. Biomass Bioenergy27,613–620 (2004).
  • Bridgewater AV. Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J.91,87–102 (2003).
  • Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conver. Manage.42,1357–1378 (2001).
  • Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev.106(9),4044–4098 (2006).
  • Corma A, Huber GW, Sauvanaud L, O’Connor P. Biomass to chemicals: catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J. Catal.257,163–171 (2008).
  • Carolan JE, Joshi SV, Dale BE. Technical and financial feasibility analysis of distributed bioprocessing using regional biomass pre-processing centers. Special issue: explorations in biofuels economics, policy and history. J. Agric. Food Ind. Org.10(5),1–27 (2007).
  • Fitzpatrick M, Champagne P, Cunningham MF, Whitney RA. A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour. Technol.101,8915–8922 (2010).
  • Sanchez O, Cardona C. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol.99,5270–5295 (2008).
  • Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev.110(6),3552–3599 (2010).
  • Ragaukkas AJ, Williams CK, Davidson BH et al. The path forward for biofuels and biomaterials. Science311,484–489 (2006).
  • Zazo JA, Bedia J, Fierro CM, Pliego G, Casas JA, Rodriguez JJ. Highly stable Fe on activated carbon catalysts for CWPO upon FeCl3 activation of lignin from black liquors. Catal. Today doi:10.1016/j.cattod.2011.10.003 (2011) (Epub ahead of print).
  • Haber J. Molecular mechanism of heterogeneous oxidation – organic and solid state chemists’ views. Stud. Surf. Sci. Catal.110,1–17 (1997).
  • Zakzeski J, Debczak A, Bruijnicx PCA, Weckhuysen BM. Catalytic oxidation of aromatic oxygenates by the heterogeneous catalyst Co-ZIF-9. Appl. Catal. A394,79–85 (2011).
  • Goring DA. Lignin: properties and paterials. In: Proc. Third Chemical Congress of North America. Glasser WG, Sarkanen S (Eds). American Chemical Society, Washington, DC, USA, 397,2–10 (1989).
  • Furusawa T, Sato T, Saito M et al. The evaluation of the stability of Ni/MgO catalysts for the gasification of lignin in supercritical water. Appl. Catal. A Gen.327,300–310 (2007).
  • Pearl IA. The Chemistry of Lignin. Marcel Dekker, Inc., NY, USA (1967).
  • Fargues C, Mathais A, Rodrigues A. Kinetics of vanillin production from kraft lignin oxidation. Ind. Eng. Chem. Res.35,28–36 (1996).
  • Hocking MB. Vanillin: synthetic flavoring from spent sulfite liquor. J. Chem. Edu.74(9),1054–1059 (1997).
  • Pandey MP, Kim CS. Lignin depolymerization and conversion: a review of thermochemical methods. Chem. Eng. Technol.34(1),29–41 (2011).
  • Stark K, Taccardi N, Bosmann A, Wasserscheid P. Oxidative depolymerization of lignin in ionic liquids. ChemSusChem3,719–723 (2010).
  • Cullis CF. Heterogeneous catalytic oxidation of hydrocarbons. Ind. Eng. Chem.59(12),19–27 (1967).
  • Panov GI, Dubkov KA, Starokon EV. Active oxygen in selective oxidation catalysis. Catal. Today117,148–155 (2006).
  • Hermans I, Spier ES, Neuenschwander U, Turra N, Baiker A. Selective oxidation catalysis: opportunities and challenges. Top. Catal.52,1162–1174 (2009).
  • Bielanski A, Haber J. Oxygen in catalysis on transition metal oxides. Catal. Rev.19(1),1–41 (1979).
  • Spivey JJ. Complete catalytic oxidation of volatile organics. Ind. Eng. Chem. Res.26,2165–2180 (1987).
  • Bielanski A, Haber J. Oxygen in Catalysis. CRC Press, Boca Raton, FL, USA (1991).
  • Haber J, Witko M. Oxidation catalysis – electronic theory revisited. J. Catal.216,416–424 (2003).
  • Vedrine JC. Molecular approach to active sites on metallic oxides for partial oxidation reactions. Stud. Surf. Sci. Catal.110,61–76 (1997).
  • Grasselli RK. Fundamentals principles of selective heterogeneous oxidation catalysis. Top. Catal.21(1–3),79–88 (2002).
  • Callahan JL, Grasselli RK. A selective factor in vapor-phase hydrocarbon oxidation catalysis. AIChE J.755–760 (1963).
  • Delmon B, Froment GF. Remote control of catalytic sites by spillover species: a chemical reaction engineering approach. Catal. Rev.38(1),69–100 (1996).
  • Tseng TK, Chu H. The kinetics of catalytic incineration of styrene over a MnO/Fe2O3 catalyst. Sci. Total Environ.275,83–89 (2001).
  • Gangwal SK, Mullins ME, Spivey JJ, Caffrey PR, Tichenor BA. Kinetics and selectivity of deep catalytic oxidation of n-hexane and benzene. Appl. Catal.36,231–247 (1988).
  • Mars P, Van Krevelen DW. Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci.5,41–59 (1954).
  • Villar JC, Caperos A, Garcia-Ochoa F. Oxidation of hardwood kraft lignin to phenolic derivatives. Nitrobenzene and copper oxides as oxidants. J. Wood Chem. Technol.17(3),259–285 (1997).
  • Luck F. A review of industrial catalytic wet air oxidation processes. Catal. Today27,195–202 (1996).
  • Luck F. Wet air oxidation: past, present and future. Catal. Today53,81–89 (1999).
  • Imamura S. Catalytic and noncatalytic wet oxidation. Ind. Eng. Chem. Res.38,1743–1753 (1999).
  • Bhargava S, Jain H, Tardia J, Akolekar D, Hoang M. Catalytic wet oxidation of ferulic acid (a model lignin compound) using heterogeneous copper catalysts. Ind. Eng. Chem. Res.46,8652–8656 (2007).
  • Kolaczkowski ST, Plucinski P, Beltran FJ, Rivas FJ, McLurgh DB. Wet air oxidation: a review of process technologies and aspects in reactor design. Chem. Eng. J.73,143–160 (1999).
  • Levec J, Pintar A. Catalytic wet air oxidation processes: a review. Catal. Today124,172–184 (2007).
  • Pinto PCR, Silva EAB, Rodridues AE. Insights into oxidative conversion of lignin to high added value phenolic aldehydes. Ind. Eng. Chem. Res.50,741–748 (2011).
  • Araújo JDP, Grande CA, Rodrigues AE. Vanillin production from lignin oxidation in a batch reactor. Chem. Eng. Res. Design88,1024–1032 (2010).
  • Akolekar DB, Bhargava SK, Shirgoankar I, Prasad J. Catalytic wet oxidation: an environmental solution for organic pollutant removal from paper and pulp industrial waste liquor. Appl. Catal. A236,255–262 (2002).
  • Zhang J, Deng H, Lin L. Wet aerobic oxidation of lignin into aromatic aldehydes catalyzed by a perovskite-type oxide: LaFe1-xCuxO3 (x= 0, 0.1, 0.2). Molecules14,2747–2757 (2009).
  • Wu G, Heitz M, Chornet E. Improved alkaline oxidation process for the production of aldehydes (Vanillin and Syringaldehyde) from steam-explosion hardwood lignin. Ind. Eng. Chem. Res.33,718–723 (1994).
  • Villar JC, Caperos A, Garcia-Ochoa F. Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Sci. Technol.35,245–255 (2001).
  • Gu X, He M, Shi Y, Li Z. Production of aromatic aldehydes by microwave catalytic oxidation of a lignin model compound with La-containing SBA-15/H2O2 systems. Bioresource5(4),2029–2039 (2010).
  • Deng H, Lin L, Sun Y et al. Perovskite type oxides LaMnO3: an efficient and recyclable heterogeneous catalyst for the wet aerobic oxidation of lignin to aromatic aldehydes. Catal. Lett.126,106–111 (2008).
  • Deng H, Lin L, Sun Y et al. Activity and stability of perovskite type oxide LaCoO3 catalyst in lignin catalytic wet oxidation to aromatic aldehydes process. Energy Fuel23,19–24 (2009).
  • Zhang YHP. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J. Ind. Microbiol. Biotechnol.35,367–375 (2008).
  • Deng H, Lin L, Liu S. Catalysis of Cu-doped co-based perovskite type oxide in wet oxidation of lignin to produce aromatic aldehydes. Energy Fuel24,4797–4802 (2010).
  • Bin W, Zhu L. Preparation of aromatic aldehydes from lignin oxidation with a perovskite-type catalyst. Appl. Mech. Mater.80,350–354 (2011).
  • Crestini C, Caponi MC, Argyropoulos DS, Saladino R. Immobilized methyltrioxo rhenium (MTO)/H2O2 systems for the oxidation of lignin and lignin model compounds. Bioorg. Med. Chem.14,5292–5302 (2006).
  • Crestini C, Crucianelli M, Orlandi M, Saladino R. Oxidative strategies in lignin chemistry: a new environmental friendly approach for the fictionalization of lignin and lignocellulosic fibers. Catal. Today156,8–22 (2010).
  • Masingale MP, Alves EF, Korbieh TN, Bose SK, Francis RC. An oxidant to replace nitrobenzene in lignin analysis. Bioresources4(3),1139–1146 (2009).
  • Sales FG, Abreu CAM, Pereira AFR. Catalytic wet air oxidation of lignin in a three phase reactor with aromatic aldehyde production. Br. J. Chem. Eng.21(2),211–218 (2004).
  • Sales FG, Maranhao LCA, Filho NML, Abreu CAM. Kinetic evaluation and modeling of lignin catalytic wet oxidation to selective production of aromatic aldehydes. Ind. Eng. Chem. Res.45,6627–6631 (2006).
  • Sales FG, Maranhão LCA, Filho NML, Abreu CAM. Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin. Chem. Eng. Sci.62,5386–5391 (2007).
  • Ma YS, Chang CN, Chiang YP, Sung HF, Chao AC. Photocatalytic degradation of lignin using Pt/TiO2 as the catalyst. Chemosphere71,998–1004 (2008).
  • Parpot P, Bettencourt AP, Carvalho AM, Belgsir EM. Biomass conversion: attempted electrooxidation of lignin for vanillin production. J. Appl. Electrochem.30,727–731 (2000).
  • Tolba R, Tian M, Wen J, Jiang ZH, Chen A. Electrochemical oxidation of lignin at IrO2-based oxide electrodes. J. Electroanal. Chem.649,9–15 (2010).
  • Tian M, Wen J, MacDonald D, Asmussen RM, Chen A. A novel approach for lignin modification and degradation. Electrochem. Comm.12,527–530 (2010).
  • Clark JH, Budarin V, Deswarte FEI et al. Green chemistry and the biorefinery: a partnership for a sustainable future. Green Chem.8,853–860 (2006).
  • Xiang Q, Lee YY. Production of oxychemicals from precipated hardwood lignin. Appl. Biochem. Biotechnol.91,71–80 (2001).
  • Holladay JE, Bozell JJ, White JF, Johnson D. Top Value Added Chemicals from Biomass: Volume II – Results of Screening for Potential Candidates from Biorefinery Lignin. US Department of Energy, NY, USA (2007).
  • Maziero P, Neto MDO, Machado D et al. Structural features of lignin obtained at different alkaline oxidation conditions from sugarcane bagasse. Ind. Crops Prod.35,61–69 (2012).
  • Collinson SR, Thielemans W. The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin. Coord. Chem. Rev.254,1854–1870 (2010).
  • Sushas PJMC, Carrott MMLR. Lignin – from natural adsorbent to activated carbon: a review. Bioresour. Technol.98,2301–2312 (2007).
  • Cotoruelo LM, Marques MD, Leiva A, Mirasol JR, Cordero T. Adsorption of oxygen containing aromatics used in petrochemicals, pharmaceutical and food industries by means of lignin based active carbons. Adsorption17,539–550 (2011).
  • Fike JH, Parrish DJ, Wolf DD et al. Long term yield potential of switchgrass for biofuel systems. Biomass Bioenergy30,198–206 (2006).
  • Pyter R, Heaton E, Dohleman F, Voigt T, Long S. Agronomic experiences with Miscanthus x giganteus in Illinois, USA. Biofuels581,41–52 (2008).
  • Hanson SK, Baker RT, Gordon JC, Scott BL, Thorn DL. Aerobic oxidation of lignin models using a base metal vanadium catalyst. Inorg. Chem.49,5611–5618 (2010).
  • Yan J, Hu Z, Pu Y, Burmmer EC, Ragauskas AJ. Chemical composition of four switch grass populations. Biomass Bioenergy34,48–53 (2010).
  • Rafelt JS, Clark JH. Recent advances in the partial oxidation of organic molecules using heterogeneous catalysis. Catal. Today57,33–44 (2000).
  • Quesada J, Rubio M, Gómez D. Ozonation products of organosolvolytic extracts from vegetal materials. J. Agric. Food Chem.4,692–697 (1998).
  • Legube B, Leitner NKV. Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catal. Today53,61–72 (1999).
  • Li X, Zhang Q, Tang L, Lu P, Sun F, Li L. Catalytic ozonation of p-chlorobenzoic acid by activated carbon and nickel supported activated carbon prepared from petroleum coke. J. Hazard. Mater.163,115–120 (2009).
  • Mathias AL, Rodrigues AE. Production of vanillin by oxidation of pine kraft lignins with oxygen. Holzforschung49,273–278 (1995).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.