306
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Engineering Saccharomyces cerevisiae fermentative pathways for the production of isobutanol

, &
Pages 185-201 | Published online: 09 Apr 2014

References

  • Durre P. Biobutanol: an attractive biofuel. Biotechnol. J.2(12),1525–1534 (2007).
  • Cann AF, Liao JC. Pentanol isomer synthesis in engineered microorganisms. Appl. Microbiol. Biotechnol.85(4),893–899 (2010).
  • Jones DT, Woods DR. Acetone-butanol fermentation revisited. Microbiol. Rev.50(4),484–524 (1986).
  • Mann MS, Dragovic Z, Schirrmacher G, Lutke-Eversloh T. Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress. Biotechnol. Lett.34(9),1643–1649 (2012).
  • Bowles LK, Ellefson WL. Effects of butanol on Clostridium acetobutylicum. Appl. Environ. Microbiol.50(5),1165–1170 (1985).
  • Tomas CA, Welker NE, Papoutsakis ET. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl. Environ. Microbiol.69(8),4951–4965 (2003).
  • Kataoka N, Tajima T, Kato J, Rachadech W, Vangnai AS. Development of butanol-tolerant Bacillus subtilis strain GRSW2-B1 as a potential bioproduction host. AMB Express1(1),10 (2011).
  • Rutherford BJ, Dahl RH, Price RE et al. Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl. Environ. Microbiol.76(6),1935–1945 (2010).
  • Knoshaug EP, Zhang M. Butanol tolerance in a selection of microorganisms. Appl. Biochem. Biotechnol.153(1–3),13–20 (2009).
  • Cornillot E, Nair RV, Papoutsakis ET, Soucaille P. The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J. Bacteriol.179(17),5442–5447 (1997).
  • Hastings JJ. Development of the fermentation industries in Great Britain. Adv. Appl. Microbiol.14,1–45 (1971).
  • Jones DT, Shirley M, Wu X, Keis S. Bacteriophage infections in the industrial acetone butanol (AB) fermentation process. J. Mol. Microbiol. Biotechnol.2(1),21–26 (2000).
  • Dickinson JR, Harrison SJ, Hewlins MJ. An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J. Biol. Chem.273(40),25751–25756 (1998).
  • Chen EC, David JJ. Quantitative determination of fusel alcohols in beer and fermenting wort. J. Sci. Food Agric.25(11),1381–1387 (1974).
  • Ryan C, Munz D, Bevers G. GEVO White Paper on Transportantion Fuels. Gevo, Englewood, CO, USA (2011).
  • Gu X, Li G, Jiang X, Huang Z, Lee C-F. Experimental study on the performance of and emissions from a low-speed light-duty diesel engine fueled with n-butanol-diesel and isobutanol-diesel blends. Proc. Inst. Mech. Eng. D J. Automobile Eng. doi:10.1177/0954407012453231 (2012) (Epub ahead of print).
  • Zhang K, Sawaya MR, Eisenberg DS, Liao JC. Expanding metabolism for biosynthesis of nonnatural alcohols. Proc. Natl Acad. Sci. USA105(52),20653–20658 (2008).
  • Atsumi S, Higashide W, Liao JC. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol.27(12),1177–1180 (2009).
  • Smith KM, Cho KM, Liao JC. Engineering Corynebacterium glutamicum for isobutanol production. Appl. Microbiol. Biotechnol.87(3),1045–1055 (2010).
  • Li S, Wen J, Jia X. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl. Microbiol. Biotechnol.91(3),577–589 (2011).
  • Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol. Biofuels4,21 (2011).
  • Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J. Biotechnol.159(1–2),32–37 (2012).
  • Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol.74(8),2259–2266 (2008).
  • Derrick S, Large PJ. Activities of the enzymes of the Ehrlich pathway and formation of branched-chain alcohols in Saccharomyces cerevisiae and Candida utilis grown in continuous culture on valine or ammonium as sole nitrogen source. J. Gen. Microbiol.139(11),2783–2792 (1993).
  • Bialecka-Florjanczyk E, Kapturowska A. Genetically modified bakers yeast Saccharomyces cerevisiae in chemical synthesis and biotransformations. In: Chemical Biology. Ekinci D (Ed.). Intech Publishers, Rijeka, Croatia, 1–25 (2012).
  • Goldman S. Genetic chemistry: production of non-native compounds in yeast. Curr. Opin. Chem. Biol.14(3),390–395 (2010).
  • Pscheidt B, Glieder A. Yeast cell factories for fine chemical and API production. Microb. Cell Fact.7,25 (2008).
  • Thomas BJ, Rothstein R. Elevated recombination rates in transcriptionally active DNA. Cell56(4),619–630 (1989).
  • Rose MD, Winston F, Heiter P. Methods in Yeast Genetics: a Laboratory Course Manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY, USA (1990).
  • Wach A, Brachat A, Pohlmann R, Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast10(13),1793–1808 (1994).
  • Güldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res.30(6),e23 (2002).
  • Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res.24(13),2519–2524 (1996).
  • Smit BA, van Hylckama Vlieg JE, Engels WJ, Meijer L, Wouters JT, Smit G. Identification, cloning, and characterization of a Lactococcus lactis branched-chain alpha-keto acid decarboxylase involved in flavor formation. Appl. Environ. Microbiol.71(1),303–311 (2005).
  • Bennetzen JL, Hall BD. Codon selection in yeast. J. Biol. Chem.257(6),3026–3031 (1982).
  • Sharp PM, Li WH. The codon Adaptation Index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res.15(3),1281–1295 (1987).
  • Gietz RD, Sugino A. New yeast – Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene74(2),527–534 (1988).
  • Hurt EC, Allison DS, Muller U, Schatz G. Amino-terminal deletions in the presequence of an imported mitochondrial protein block the targeting function and proteolytic cleavage of the presequence at the carboxy terminus. J. Biol. Chem.262(3),1420–1424 (1987).
  • Allison DS, Schatz G. Artificial mitochondrial presequences. Proc. Natl Acad. Sci. USA83(23),9011–9015 (1986).
  • Elisakova V, Patek M, Holatko J et al. Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl. Environ. Microbiol.71(1),207–213 (2005).
  • Kopecky J, Janata J, Pospisil S, Felsberg J, Spizek J. Mutations in two distinct regions of acetolactate synthase regulatory subunit from Streptomyces cinnamonensis result in the lack of sensitivity to end-product inhibition. Biochem. Biophys. Res. Commun.266(1),162–166 (1999).
  • Horton RM, Hunt MD, Ho SN, Pullen JK, Pease LR. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene77(1),61–68 (1989).
  • Shetty RP, Endy D, Knight TF Jr. Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng.2,5 (2008).
  • Wright AP, Bruns M, Hartley BS. Extraction and rapid inactivation of proteins from Saccharomyces cerevisiae by trichloroacetic acid precipitation. Yeast5(1),51–53 (1989).
  • Sopko R, Raithatha S, Stuart D. Phosphory-lation and maximal activity of the Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is dependent on Ime2. Mol. Cell. Biol.22(20),7024–7040 (2002).
  • Stuart D, Wittenberg C. CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint. Genes Dev.12(17),2698–2710 (1998).
  • Pringle JR, Adams AE, Drubin DG, Haarer BK. Immunofluorescence methods for yeast. Methods Enzymol.194,565–602 (1991).
  • Gibreel A, Sandercock JR, Lan J et al. Fermentation of barley by using Saccharomyces cerevisiae: examination of barley as a feedstock for bioethanol production and value-added products. Appl. Environ. Microbiol.75(5),1363–1372 (2009).
  • ter Schure EG, Flikweert MT, van Dijken JP, Pronk JT, Verrips CT. Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae. Appl. Environ. Microbiol.64(4),1303–1307 (1998).
  • Vuralhan Z, Luttik MA, Tai SL et al. Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl. Environ. Microbiol.71(6),3276–3284 (2005).
  • Vuralhan Z, Morais MA, Tai SL, Piper MD, Pronk JT. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl. Environ. Microbiol.69(8),4534–4541 (2003).
  • Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature451(7174),86–89 (2008).
  • de Smidt O, du Preez JC, Albertyn J. The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res.8(7),967–978 (2008).
  • Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl. Microbiol. Biotechnol.85(3),651–657 (2010).
  • Jarboe LR. YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl. Microbiol. Biotechnol.89(2),249–257 (2011).
  • Larroy C, Pares X, Biosca JA. Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family. Eur. J. Biochem.269(22),5738–5745 (2002).
  • Ryan ED, Kohlhaw GB. Subcellular localization of isoleucine-valine biosynthetic enzymes in yeast. J. Bacteriol.120(2),631–637 (1974).
  • Magee PT, Robichon-Szulmajster H. The regulation of isoleucine-valine biosynthesis in Saccharomyces cerevisiae. 3. Properties and regulation of the activity of acetohydroxyacid synthetase. Eur. J. Biochem.3(4),507–511 (1968).
  • Chipman D, Barak Z, Schloss JV. Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim. Biophys. Acta1385(2),401–419 (1998).
  • Pang SS, Duggleby RG. Expression, purification, characterization, and reconstitution of the large and small subunits of yeast acetohydroxyacid synthase. Biochemistry38(16),5222–5231 (1999).
  • Baez A, Cho KM, Liao JC. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl. Microbiol. Biotechnol.90(5),1681–1690 (2011).
  • Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MM, Arnold FH. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab. Eng.13(3),345–352 (2011).
  • Outten CE, Culotta VC. A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. EMBO J.22(9),2015–2024 (2003).
  • Schoondermark-Stolk SA, Tabernero M, Chapman J et al. Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol. FEMS Yeast Res.5(8),757–766 (2005).
  • Chang LF, Cunningham TS, Gatzek PR, Chen WJ, Kohlhaw GB. Cloning and characterization of yeast Leu4, one of two genes responsible for alpha-isopropylmalate synthesis. Genetics108(1),91–106 (1984).
  • Seeboth PG, Bohnsack K, Hollenberg CP.pdc1(0) mutants of Saccharomyces cerevisiae give evidence for an additional structural PDC gene: cloning of PDC5, a gene homologous to PDC1. J. Bacteriol.172(2),678–685 (1990).
  • Lee WH, Seo SO, Bae YH, Nan H, Jin YS, Seo JH. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess Biosyst. Eng.35(9),1467–1475 (2012).
  • Brat D, Weber C, Lorenzen W, Bode HB, Boles E. Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol. Biofuels5(1),65 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.