182
Views
6
CrossRef citations to date
0
Altmetric
Review

Recent developments in the microbial production of 1,3-propanediol

, , &
Pages 651-667 | Published online: 09 Apr 2014

References

  • Biebl H, Menzel K, Zeng AP et al. Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol.52(3),289–297 (1999).
  • Sauer M, Marx H, Mattanovich D. Microbial production of 1,3-propanediol. Recent Pat. Biotechnol.2(3),191–197 (2008).
  • Zeng AP, Biebl H. Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv. Biochem. Eng. Biotechnol.74,239–259 (2002).
  • Kurian JV. A new polymer platform for the future – Sorona (R) from corn derived 1,3-propanediol. J. Polym. Environ.13(2),159–167 (2005).
  • Chuah HH, Brown HS, Dalton PA et al. Corterra poly (trimethylene terephthalate). A new performance carpet fiber. Int. Fiber J. October (1995).
  • Chuah HH. Corterra poly (trimethylene terephthalate) – new polymeric fiber for carpets. Chem. Fibers Int.6(46),424–429 (1996).
  • Brown HS, Chuah HH. Texturing of textile filament yarns based on polytrimethylene terephthalate. Chem. Fibers Int.1(47),72–73 (1997).
  • Hwo C, Forschner T, Lowtan R et al. Poly(trimethylene phthalates or naphthalate) and copolymers: new opportunities in film and packaging applications. J. Plast. Film Sheet.15(3),219–234 (1999).
  • Liu H, Xu Y, Zheng Z et al. 1,3-propanediol and its copolymers: research, development and industrialization. Biotechnol. J.5(11),1137–1148 (2010).
  • Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F et al. Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DG1(pSPD5). Appl. Environ. Microbiol.72(1),96–101 (2006).
  • Forage RG, Lin E. DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella-pneumoniae NCIB-418. J. Bacteriol.151(2),591–599 (1982).
  • Tong IT, Liao HH, Cameron DC. 1,3-propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniaedha regulon. Appl. Environ. Microbiol.57(12),3541–3546 (1991).
  • Daniel R, Gottschalk G. Growth temperature-dependent activity of glycerol dehydratase in Escherichia coli expressing the Citrobacter freundiidha regulon. FEMS Microbiol. Lett.79(1–3),281–285 (1992).
  • Raynaud C, Sarcabal P, Meynial-Salles I et al. Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum. Proc. Natl Acad. Sci. USA100(9),5010–5015 (2003).
  • Huang H, Gong CS, Tsao GT. Production of 1,3-propanediol by Klebsiella pneumoniae. Appl. Biochem. Biotechnol.98–100,687–698 (2002).
  • Homann T, Tag C, Biebl H et al. Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl. Microbiol. Biotechnol.33(2),121–126 (1990).
  • Boenigk R, Bowien S, Gottschalk G. Fermentation of glycerol to 1,3-propanediol in continuous cultures of Ctrobacter freundii. Appl. Microbiol. Biotechnol.38(4),453–457 (1993).
  • Barbirato F, Camarasaclaret C, Grivet JP et al. Glycerol fermentation by a new 1,3-propanediol-producing microorganism – Enterobacter agglomerans. Appl. Microbiol. Biotechnol.43(5),786–793 (1995).
  • Stieb M, Schink B. A new 3-hydroxybutyrate fermenting anaerobe, Ilyobacter-polytropus, gen-nov, sp-nov, possessing various fermentation pathways. Arch. Microbiol.140(2–3),139–146 (1984).
  • Abbadandaloussi S, Manginotdurr C, Amine J et al. Isolation and characterization of Clostridium butyricum DSM-5431 mutants with increased resistance to 1,3-propanediol and altered production of acids. Appl. Environ. Microbiol.61(12),4413–4417 (1995).
  • Nakas JP, Schaedle M, Parkinson CM et al. System-development for linked-fermentation production of solvents from algal biomass. Appl. Environ. Microbiol.46(5),1017–1023 (1983).
  • Luthi-Peng Q, Dileme FB, Puhan Z. Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl. Microbiol. Biotechnol.59(2–3),289–296 (2002).
  • Ainala SK, Ashok S, Ko Y et al. Glycerol assimilation and production of 1,3-propanediol by Citrobacter amalonaticus Y19. Appl. Microbiol. Biotechnol.97(11),5001–5011 (2013).
  • Khan NH, Kang TS, Grahame DA et al. Isolation and characterization of novel 1,3-propanediol-producing Lactobacillus panis PM1 from bioethanol thin stillage. Appl. Microbiol. Biotechnol.97(1),417–428 (2013).
  • Pflügl S, Marx H, Mattanovich D et al. 1,3-propanediol production from glycerol with Lactobacillus diolivorans. Bioresour. Technol.119,133–140 (2012).
  • van Gelder AH, Aydin R, Alves MM et al. 1,3-propanediol production from glycerol by a newly isolated Trichococcus strain. Microb. Biotechnol.5(4),573–578 (2012).
  • Hong E, Yoon S, Kim J et al. Isolation of microorganisms able to produce 1,3-propanediol and optimization of medium constituents for Klebsiella pneumoniae AJ4. Bioprocess Biosyst. Eng.36(6),835–843 (2013).
  • Hao J, Lin RH, Zheng ZM et al. Isolation and characterization of microorganisms able to produce 1,3-propanediol under aerobic conditions. World J. Microbiol. Biotechnol.24(9),1731–1740 (2008).
  • Metsoviti M, Zeng AP, Koutinas AA et al. Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J. Biotechnol.163(4),408–418 (2013).
  • Ringel AK, Wilkens E, Hortig D et al. An improved screening method for microorganisms able to convert crude glycerol to 1,3-propanediol and to tolerate high product concentrations. Appl. Microbiol. Biotechnol.93(3),1049–1056 (2012).
  • Jensen TO, Kvist T, Mikkelsen MJ et al. Production of 1,3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol. AMB Express2(1),44 (2012).
  • Dong XY, Xiu ZL, Li S et al. Dielectric barrier discharge plasma as a novel approach for improving 1,3-propanediol production in Klebsiella pneumoniae. Biotechnol. Lett.32(9),1245–1250 (2010).
  • Lu S, Li S, Luo F et al. Screening and breeding high 1,3-propanediol producing strains by genome shuffling. Wei Sheng Wu Xue Bao51(4),474–479 (2011).
  • Otte B, Grunwaldt E, Mahmoud O et al. Genome shuffling in Clostridium diolis DSM 15410 for improved 1,3-propanediol production. Appl. Environ. Microbiol.75(24),7610–7616 (2009).
  • Zeng AP, Sabra W. Microbial production of diols as platform chemicals: recent progresses. Curr. Opin. Biotechnol.22(6),749–757 (2011).
  • Xu Y, Liu H, Du W et al. Integrated production for biodiesel and 1,3-propanediol with lipase-catalyzed transesterification and fermentation. Biotechnol. Lett.31(9),1335–1341 (2009).
  • Chatzifragkou A, Papanikolaou S. Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes. Appl. Microbiol. Biotechnol.95(1),13–27 (2012).
  • Petitdemange E, Durr C, Andaloussi SA et al. Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum. J. Ind. Microbiol.15(6),498–502 (1995).
  • Venkataramanan KP, Boatman JJ, Kurniawan Y et al. Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Appl. Microbiol. Biotechnol.93(3),1325–1335 (2012).
  • Chatzifragkou A, Dietz D, Komaitis M et al. Effect of biodiesel-derived waste glycerol impurities on biomass and 1,3-propanediol production of Clostridium butyricum VPI 1718. Biotechnol. Bioeng.107(1),76–84 (2010).
  • Moon C, Ahn JH, Kim SW et al. Effect of biodiesel-derived raw glycerol on 1,3-propanediol production by different microorganisms. Appl. Biochem. Biotechnol.161(1–8),502–510 (2010).
  • Papanikolaou S, Ruiz-Sanchez P, Pariset B et al. High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J. Biotechnol.77(2–3),191–208 (2000).
  • Papanikolaou S, Aggelis G. Modelling aspects of the biotechnological valorization of raw glycerol: production of citric acid by Yarrowia lipolytica and 1,3-propanediol by Clostridium butyricum. J. Chem. Technol. Biotechnol.78(5),542–547 (2003).
  • Gonzalez-Pajuelo M, Andrade JC, Vasconcelos I. Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J. Ind. Microbiol. Biotechnol.31(9),442–446 (2004).
  • Hirschmann S, Baganz K, Koschik I et al. Development of an integrated bioconversion process for the production of 1,3-propanediol from raw glycerol waters. Landbauforsch. Volk.55(4),261–267 (2005).
  • Mu Y, Teng H, Zhang D et al. Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol. Lett.28(21),1755–1759 (2006).
  • Abbad-Andaloussi S, Amine J, Gerard P et al. Effect of glucose on glycerol metabolism by Clostridium butyricum DSM 5431. J. Appl. Microbiol.84(4),515–522 (1998).
  • Malaoui H, Marczak R. Influence of glucose on glycerol metabolism by wild-type and mutant strains of Clostridium butyricum E5 grown in chemostat culture. Appl. Microbiol. Biotechnol.55(2),226–233 (2001).
  • Baeza-Jimenez R, Lopez-Martinez LX, De la Cruz-Medina J et al. Effect of glucose on 1,3-propanediol production by Lactobacillus reuteri. Revista Mexicana de Ingenieria Quimica10(1),39–46 (2011).
  • Hartlep M, Hussmann W, Prayitno N et al. Study of two-stage processes for the microbial production of 1,3-propanediol from glucose. Appl. Microbiol. Biotechnol.60(1–2),60–66 (2002).
  • Mendes FS, Gonzalez-Pajuelo M, Cordier H et al. 1,3-propanediol production in a two-step process fermentation from renewable feedstock. Appl. Microbiol. Biotechnol.92(3),519–527 (2011).
  • Menzel K, Zeng AP, Deckwer WD. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb. Technol.20(2),82–86 (1997).
  • Papanikolaou S, Fakas S, Fick M et al. Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenergy32(1),60–71 (2008).
  • Xue X, Li W, Li Z et al. Enhanced 1,3-propanediol production by supply of organic acids and repeated fed-batch culture. J. Ind. Microbiol. Biotechnol.37(7),681–687 (2010).
  • Kaur G, Srivastava AK, Chand S. Simple strategy of repeated batch cultivation for enhanced production of 1,3-propanediol using Clostridium diolis. Appl. Biochem. Biotechnol.167(5),1061–1068 (2012).
  • Chatzifragkou A, Papanikolaou S, Dietz D et al. Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Appl. Microbiol. Biotechnol.91(1),101–112 (2011).
  • Dietz D, Zeng AP. Efficient production of 1, 3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium. Bioprocess Biosyst. Eng. doi: 10.1007/s00449-013-0989-0 (2013) (Epub ahead of print).
  • Saxena RK, Anand P, Saran S et al. Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol. Adv.27(6),895–913 (2009).
  • Nakamura CE, Whited GM. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol.14(5),454–459 (2003).
  • Pahlman AK, Granath K, Ansell R et al. The yeast glycerol 3-phosphatases gpp1p and gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J. Biol. Chem.276(5),3555–3563 (2001).
  • Thome PE. Isolation of a GPD gene from Debaryomyces hansenii encoding a glycerol 3-phosphate dehydrogenase (NAD(+)). Yeast21(2),119–126 (2004).
  • Zheng Y, Zhao L, Zhang J et al. Production of glycerol from glucose by coexpressing glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase in Klebsiella pneumoniae. J. Biosci. Bioeng.105(5),508–512 (2008).
  • Ma Z, Rao Z, Xu L et al. Expression of dha operon required for 1,3-PD formation in Escherichia coli and Saccharomyces cerevisiae. Curr. Microbiol.60(3),191–198 (2010).
  • Ma Z, Bian YL, Shentu XP et al. Development of a novel recombinant strain Zygosacharomyces rouxii JL2011 for 1,3-propanediol production from glucose. Appl. Microbiol. Biotechnol.97(9),4055–4064 (2013).
  • Hong WK, Kim CH, Heo SY et al. 1,3-propandiol production by engineered Hansenula polymorpha expressing dha genes from Klebsiella pneumoniae. Bioprocess Biosyst. Eng.34(2),231–236 (2011).
  • Ma Z, Rao ZM, Shen W et al. Construction of recombinant Saccharomyces cerevisiae producing 1,3-propanediol by one step method. Wei Sheng Wu Xue Bao47(4),598–603 (2007).
  • Rao Z, Ma Z, Shen W et al. Engineered Saccharomyces cerevisiae that produces 1,3-propanediol from D-glucose. J. Appl. Microbiol.105(6),1768–1776 (2008).
  • Liang Q, Zhang H, Li S et al. Construction of stress-induced metabolic pathway from glucose to 1,3-propanediol in Escherichia coli. Appl. Microbiol. Biotechnol.89(1),57–62 (2011).
  • Xu YZ, Guo NN, Zheng ZM et al. Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae. Biotechnol. Bioeng.104(5),965–972 (2009).
  • Oh BR, Seo JW, Heo SY et al. Optimization of culture conditions for 1,3-propanediol production from glycerol using a mutant strain of Klebsiella pneumoniae. Appl. Biochem. Biotechnol.166(1),127–137 (2012).
  • Zhang G, Yang G, Wang X et al. Influence of blocking of 2,3-butanediol pathway on glycerol metabolism for 1,3-propanediol production by Klebsiella oxytoca. Appl. Biochem. Biotechnol.168(1),116–128 (2012).
  • Streekstra H, Demattos M, Neijssel OM et al. Overflow metabolism during anaerobic growth of Klebsiella aerogenes NCTC 418 on glycerol and dihydroxyacetone in chemostat culture. Arch. Microbiol.147(3),268–275 (1987).
  • Zhang Y, Du Chenyu, Rao C et al. Regulation of vitamin C and vitamin E on the biosynthesis of 1,3-propanediol by Klebsiella pneumoniae. Chinese J. Process Eng.5(2),197–200 (2005).
  • Zhang Y, Li Y, Du C et al. Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. Metab. Eng.8(6),578–586 (2006).
  • Seo MY, Seo JW, Heo SY et al. Elimination of byproduct formation during production of 1,3-propanediol in Klebsiella pneumoniae by inactivation of glycerol oxidative pathway. Appl. Microbiol. Biotechnol.84(3),527–534 (2009).
  • Oh BR, Seo JW, Heo SY et al. Fermentation strategies for 1,3-propanediol production from glycerol using a genetically engineered Klebsiella pneumoniae strain to eliminate byproduct formation. Bioprocess Biosyst. Eng.35(1–2),159–165 (2012).
  • Horng YT, Chang KC, Chou TC et al. Inactivation of dhaD and dhaK abolishes byproduct accumulation during 1,3-propanediol production in Klebsiella pneumoniae. J. Ind. Microbiol. Biotechnol.37(7),707–716 (2010).
  • Barbirato F, Soucaille P, Bories A. Physiologic mechanisms involved in accumulation of 3-hydroxypropionaldehyde during fermentation of glycerol by Enterobacter agglomerans. Appl. Environ. Microb.62(12),4405–4409 (1996).
  • Hao J, Wang W, Tian JS et al. Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneumoniae TUAC01. J. Ind. Microbiol. Biotechnol.35(7),735–741 (2008).
  • Chen Z, Liu HJ, Liu DH. Regulation of 3-hydroxypropionaldehyde accumulation in Klebsiella pneumoniae by overexpression of dhaT and dhaD genes. Enzyme Microb. Technol.45(4),305–309 (2009).
  • Ma Z, Rao Z, Zhuge B et al. Construction of a novel expression system in Klebsiella pneumoniae and its application for 1,3-propanediol production. Appl. Biochem. Biotechnol.162(2),399–407 (2010).
  • Oh BR, Seo JW, Heo SY et al. Efficient production of 1,3-propanediol from glycerol upon constitutive expression of the 1,3-propanediol oxidoreductase gene in engineered Klebsiella pneumoniae with elimination of byproduct formation. Bioprocess Biosyst. Eng.36(6),757–763 (2013).
  • Ma Z, Shentu XP, Bian YL et al. Effects of NADH availability on the Klebsiella pneumoniae strain with 1,3-propanediol operon over-expression. J. Basic Microbiol.53(4),348–354 (2013).
  • Berrios-Rivera SJ, Bennett GN, San KY. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase. Metab. Eng.4(3),217–229 (2002).
  • Zhao L, Zheng Y, Ma XY et al. Effects of over-expression of glycerol dehydrogenase and 1,3-propanediol oxidoreductase on bioconversion of glycerol into 1,3-propandediol by Klebsiella pneumoniae under micro-aerobic conditions. Bioprocess. Biosyst. Eng.32(3),313–320 (2009).
  • Luo LH, Seo JW, Oh BR et al. Stimulation of reductive glycerol metabolism by overexpression of an aldehyde dehydrogenase in a recombinant Klebsiella pneumoniae strain defective in the oxidative pathway. J. Ind. Microbiol. Biotechnol.38(8),991–999 (2011).
  • Raj SM, Rathnasingh C, Jung WC et al. Effect of process parameters on 3-hydroxypropionic acid production from glycerol using a recombinant Escherichia coli. Appl. Microbiol. Biotechnol.84(4),649–657 (2009).
  • Wang W, Sun JB, Hartlep M et al. Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae. Biotechnol. Bioeng.83(5),525–536 (2003).
  • Seo JW, Seo MY, Oh BR et al. Identification and utilization of a 1,3-propanediol oxidoreductase isoenzyme for production of 1,3-propanediol from glycerol in Klebsiella pneumoniae. Appl. Microbiol. Biotechnol.85(3),659–666 (2010).
  • Chen Z, Liu HJ, Liu DH. Metabolic pathway analysis of 1,3-propanediol production with a genetically modified Klebsiella pneumoniae by overexpressing an endogenous NADPH-dependent alcohol dehydrogenase. Biochem. Eng. J.54(3),151–157 (2011).
  • Huang ZH, Zhang YP, Liu M et al. Expression and characterization of formate dehydrogenase gene in Klebsiella pneumoniae. Wei Sheng Wu Xue Bao47(1),64–68 (2007).
  • Zhu JG, Li S, Ji XJ et al. Enhanced 1,3-propanediol production in recombinant Klebsiella pneumoniae carrying the gene yqhD encoding 1,3-propanediol oxidoreductase isoenzyme. World J. Microbiol. Biotechnol.25(7),1217–1223 (2009).
  • Vaidyanathan H, Kandasamy V, Gopal RG et al. Glycerol conversion to 1, 3-propanediol is enhanced by the expression of a heterologous alcohol dehydrogenase gene in Lactobacillus reuteri. AMB Express1(1),37 (2011).
  • Zhuge B, Zhang C, Fang H et al. Expression of 1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol. Appl. Microbiol. Biotechnol.87(6),2177–2184 (2010).
  • Celinska E. Debottlenecking the 1,3-propanediol pathway by metabolic engineering. Biotechnol. Adv.28(4),519–530 (2010).

▪ Patents

  • Lawrence, Frederick R: US3687981(1972).
  • Emptage M, Haynie SL, Laffend LA, Pucci JP, Whited G: US6514733 (2003).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.