136
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Ionic liquids versus amine solutions in biogas upgrading: the level of volatile organic compounds

, , , &
Pages 295-311 | Published online: 09 Apr 2014

References

  • Rasi S, Lehtinen J, Rintala J. Determination of organic silicon compounds in biogases from waste water treatments plants, landfills, and co-digestion plants. Renew. Energ.32(12),2666–2673 (2010).
  • Arnold M. Reduction and Monitoring of Biogas Trace Compounds. VTT Research Notes 2496. VTT Technical Research Centre of Finland, Finland, 74 (2009).
  • Ajhar M, Travesset M, Yüce S, Melin T. Siloxane removal from landfill and digester gas – a technology overview. Bioresour. Technol.101(9),2913–2923 (2010).
  • Billig E, Grope J. Overview of biomethane grid injection in Germany. Proceedings of 20th European Biomass Conference and Exhibition. Milan, Italy, 18–22 June 2012.
  • Rasi S, Veijanen A, Rintala J. Trace compounds of biogas from different biogas production plants. Energy32(8),1375–1380 (2007).
  • Läntelä J, Rasi S, Lehtinen J, Rintala J. Landfill gas upgrading with pilot-scale water scrubber: performance assessment with absorption water recycling. Appl. Energy92,307–314 (2012).
  • Starr K, Gabarrell X, Villalba G, Talens L, Lombardi L. Life cycle assessment of biogas upgrading technologies. Waste Manage.32(5),991–999 (2012).
  • Grande CA, Rodrigues AE. Layered vacuum pressure-swing adsorption for biogas upgrading. Ind. Eng. Chem. Res.46(23),7844–7848 (2007).
  • Zhou W, Guo J, Tan H. Upgrading of methane from biogas by pressure swing adsorption. Adv. Mater. Res.236–238,268–271 (2011).
  • Santos MPS, Grande CA, Rodrigues AE. Pressure swing adsorption for biogas upgrading: effect of recycling streams in pressure swing adsorption design. Ind. Eng. Chem. Res.50(2),974–985 (2011).
  • Liyuan D, Hagg M-B. Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. Int. J. Greenh. Gas Con.4(4),638–646 (2010).
  • Favre E, Bounaceur R, Roizard D. Biogas, membranes and carbon dioxide capture. J. Membr. Sci.92,307–314 (2012).
  • Tuinier MJ, van Sint Annaland M. Biogas purification using cryogenic packed-bed technology. Ind. Eng. Chem. Res.51(15),5552–5558 (2012).
  • Environment Agency. Guidance on Gas Treatment Technologies for Landfill Gas Engines. Environment Agency, Bristol, UK (2004).
  • Blumberga D, Kuplais Ģ, Veidenbergs I, Dãce E. Benchmarking method for estimation of biogas upgrading schemes. Latvian J. Phy. Tech. Sci.46(4),23–35 (2009).
  • Brennecke JF, Gurkan BE. Ionic liquids for CO2 capture and emission reduction. J. Phys. Chem. Lett.1(24),3459–3464 (2010).
  • Bara JE, Camper DE, Gin DL, Noble RD. Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc. Chem. Res.43(1),152–159 (2010).
  • Privalova EI, Maki-Arvela P, Murzin DY, Mikkola J-P. Capturing CO2: conventional versus ionic-liquid based technologies. Rus. Chem. Rev.81(5),435–457 (2012).
  • Hasib-ur-Rahman M, Siaj M, Larachi F. Ionic liquids for CO2 capture-development and progress. Chem. Eng. Process.49,313–322 (2010).
  • Wasserscheid P, Welton T. Ionic Liquids in Synthesis. Wiley-WCH, Weinheim, Germany (2003).
  • Bidart C, Jimenez R, Carlesi C, Flores M, Berg A. Synthesis and usage of common and functionalized ionic liquids for biogas upgrading. Chem. Eng. J.175,388–395 (2011).
  • Privalova E, Rasi S, Mäki-Arvela P et al. CO2 capture from biogas: absorbent selection. RSC Adv.3,2979–2994 (2013).
  • Kolev N. Packed Bed Columns: For Absorption, Desorption, Rectification and Direct Heat Transfer. Elsevier, Amsterdam, The Netherlands (2006).
  • Derbal K, Bencheikh-Lehocine M, Meniai AH. Study of biodegradability of organic fraction of municipal solids waste. Energy Procedia19,239–248 (2012).
  • Kim JK, Oh BR, Chun YN, Kim SW. Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J. Biosci. Bioeng.102(4),328–332 (2006).
  • Vindis P, Mursec B, Janzekovic M, Cus F. The impact of mesophilic and thermophilic anaerobic digestion on biogas production. J. Achieve. Mat. Manuf. Eng.36(2),192–198 (2009).
  • Gaur A, Park J-W, Maken S, Song H-J, Park J-J. Landfill gas (LFG) processing via adsorption and alkanolamine absorption. Fuel Process. Technol.91(6),635–640 (2010).
  • Ryckebosch E, Drouillon M, Vervaeren H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy35(5),1633–1645 (2011).
  • Anabel R, Levesque F, Hanif L. Separations technology improves amine system’s overall reliability. Oil Gas J.108(1),46–48, 50–53 (2010).
  • Chu X, Hu Y, Li J et al. Desulfurization of diesel fuel by extraction with [BF4]- based ionic liquid. Chin. J. Chem. Eng.16(6),881–884 (2008).
  • Zhang S, Zhang Q, Zhang ZC. Extractive desulfurization and denitrogenation of fuels using ionic liquids. Ind. Eng. Chem. Res.43(2),614–622 (2004).
  • Mochizuki Y, Sugawara K. Removal of organic sulfur from hydrocarbon resources using ionic liquids. Energy Fuels22(5),3303–3307 (2008).
  • Nejad NF, Zand EK. A new approach to dearomatization of gasoline by ionic liquid and liquid–liquid extraction. Pet. Sci. Technol.29(22),2372–2376 (2011).
  • Čekanova P, Jasminska N, Brestovic T, Schvarzbacherova E. Biogas upgrading processes for the production of natural gas substitute. Holist. Approach Environ.1(2),53–62 (2011).
  • Osorio F, Torres JC. Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production. Renew. Energ.34(10),2164–2171 (2009).
  • Andersson FAT, Karlsson A, Svensson BH. Occurrence and abatement of volatile sulfur compounds during biogas production. J. Air Waste Manage. Assoc.54(7),855–861 (2004).
  • Smet E, Lens P, Van Langenhove H. Treatment of waste gases contaminated with odorous sulfur compounds. Crit. Rev. Environ. Sci. Technol.28(1),89–117 (1998).
  • Wu T, Wang X, Li D, Yi Z. Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes. Atmos. Environ.44(39),5065–5071 (2010).
  • Matsumoto M, Inomoto Y, Kondo K. Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids. J. Memb. Sci.246,77–81 (2005).
  • Cassol CC, Umpierre AP, Ebeling G, Ferrera B, Chiaro SSX, DuPont J. On the extraction of aromatic compounds from hydrocarbons by imidazolium ionic liquids. Int. J. Mol. Sci.8,593–605 (2007).
  • Cabaço MI, Besnard M, Danten Y, Coutinho JAP. Carbon dioxide in 1-butyl-3-methylimidazolium acetate. I. Unusual solubility investigated by Raman spectroscopy and DFT calculations. J. Phys. Chem. A116(6),1605–1620 (2012).
  • Rasi S, Läntelä J, Veijanen A, Rintala J. Landfill gas upgrading with countercurrent water wash. Waste Manage.28(9),1528–1534 (2008).
  • Rossol D, Schmelz K. Siloxane im Faulgas. GWF Wasser/Abwasser146(1),55–61 (2005).
  • Brooke DN, Crookes MJ, Gray D, Robertson S. Using science to create a better place. In: Environmental Risk Assessment Report: Octamethylcyclotetrasiloxane. Environment Agency, Bristol, UK (2009).
  • Dewil R, Appels L, Baeyens J. Energy use of biogas hampered by the presence of siloxanes. Energy Convers. Manage.47,1711–1722 (2006).
  • Schweigkofler M, Niessner R. Determination of siloxanes and VOC in landfill gas and sewage gas by canister sampling and GC–MS/AES analysis. Environ. Sci. Technol.33(20),3680–3685 (1999).
  • Prochazkova A, Vrbovaand V, Ciahotmy K. Removal of siloxanes from biogas using adsorption. In: Proceedings of the 3rd International Congress on Biotechniques for Air Pollution Control. Delft, The Netherlands, 321–329 (2010).
  • Schweigkofler M, Niessner R. Removal of siloxanes in biogases. J. Hazard. Mater. B83,183–196 (2001).
  • Meindersma GW, Podt A, Klaren MB, Haan ABD. Separation of aromatic and aliphatic hydrocarbons with ionic liquids. Chem. Eng. Comm.193,1384–1396 (2006).
  • Farhadian M, Duchez D, Vachelard C, Larroche C. Monoaromatics removal from polluted water through bioreactors – a review. Water Res.42(6–7),1325–1341(2008).
  • Lide D. Handbook of Chemistry and Physics 77th Edition. CRC Press, NY, USA (1996).
  • Phuphuakrat T, Namioka T, Yoshikawa K. Absorptive removal of biomass tar using water and oily materials. Bioresour. Technol.102(2),543–549 (2011).
  • Nefedieva M, Lebedeva O, Kultin D, Kustov L, Borisenkova S, Krasovskiy V. Ionic liquids based on imidazolium tetrafluoroborate for the removal of aromatic sulfur-containing compounds from hydrocarbon mixtures. Green Chem.12,346–349 (2010).
  • Cammarata L, Kazarian SG, Salter PA, Welton T. Molecular states of water in room temperature ionic liquids. Phys. Chem. Chem. Phys.3,5192–5200 (2001).
  • Zhao W, He G, Zhang L et al. Effect of water in ionic liquid on the separation performance of supported ionic liquid membrane for CO2/N2. J. Membr. Sci.350(1–2),279–285 (2010).
  • Mantz RA, Trulove PC. Chapter 3.2. Viscosity and density of ionic liquids. In: Ionic Liquids in Synthesis. Wasserscheid P, Welton T (Eds). Wiley-WCH, Weinheim, Germany, 56–68 (2003).
  • Xue QM, Liu YS, Huo P. Dynamic removal of CO2 on MDEA-loaded SBA-15 for biogas upgrading. Adv. Mater. Res.204–210,1245–1249 (2011).
  • Boulinguiez B, Le Cloirec P. Biogas pre-upgrading by adsorption of trace compounds onto granular activated carbons and an activated carbon fiber-cloth. Water Sci. Technol.59(5),935–944 (2009).
  • Montanari T, Finocchio E, Salvatore E et al. CO2 separation and landfill biogas upgrading: a comparison of 4A and 13X zeolite adsorbents. Energy36(1),314–319 (2011).
  • Yuan B, Ma D, Wang X et al. A microporous, moisture-stable, and amine-functionalized metal-organic framework for highly selective separation of CO2 from CH4. Chem. Commun.48(8),1135–1137 (2012).
  • Karaszova M, Vejrazka J, Vesely V et al. A water-swollen thin film composite membrane for effective upgrading of raw biogas by methane. Sep. Purif. Technol.89,212–216 (2012).
  • Raab K, Lamprecht M, Brechtel K, Scheffknecht G. Innovative CO2 separation of biogas by polymer resins: operation of a continuous lab-scale plant. Eng. Life Sci.12(3),327–335 (2012).
  • Ozdemir C, Dursun S, Sen N. Anaerobic removal of volatile organic compounds (VOC) from wastewater using methanol and ethylene glycol as co-substrate. J. Int. Environ. Appl. Sci.2(1),33–39 (2007).
  • Baciocchi R, Corti A, Costa G, Lombardi L, Zingaretti D. Storage of carbon dioxide captured in a pilot-scale biogas upgrading plant by accelerated carbonation of industrial residues. Energy Procedia4,4985–4992 (2011).
  • Budzianowski WM. Benefits of biogas upgrading to biomethane by high-pressure reactive solvent scrubbing. Biofuels Bioprod. Biorefin.6(1),12–20 (2012).
  • Baciocchi R, Costa G, Gavasci R, Lombardi L, Zingaretti D. Regeneration of a spent alkaline solution from a biogas upgrading unit by carbonation of APC residues. Chem. Eng. J.179,63–71 (2012).
  • Dubois L, Thomas D. Comparison of various alkaline solutions for H2S/CO2-selective absorption applied to biogas purification. Chem. Eng. Technol.33(10),1601–1609 (2010).
  • Kao C-Y, Chiu S-Y, Huang T-T et al. A mutant strain of microalga Chlorella sp. for the carbon dioxide capture from biogas. Biomass Bioenergy36,132–140 (2012).
  • Kao C-Y, Chiu S-Y, Huang T-T, Dai L, Hsu L-K, Lin C-S. Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgrading. Appl. Energy93,176–183 (2012).
  • Luo G, Angelidaki I. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnol. Bioeng.109(11),2729–2736 (2012).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.