853
Views
0
CrossRef citations to date
0
Altmetric
Review

Analytical Pitfalls and Challenges in Clinical Metabolomics

, , &
Pages 1509-1532 | Received 07 Apr 2016, Accepted 20 May 2016, Published online: 21 Jun 2016

References

  • Gates SC , SweeleyCC. Quantitative metabolic profiling based on gas chromatography. Clin. Chem. 24 (10), 1663–1673 (1978).
  • Dalgliesh CE , HorningEC, HorningMG, KnoxKL, YargerK. A gas-liquid-chromatographic procedure for separating a wide range of metabolites occurring in urine or tissue extracts. Biochem. J. 101 (3), 792–810 (1966).
  • Oliver SG , WinsonMK, KellDB, BaganzF. Systematic functional analysis of the yeast genome. Trends Biotechnol. 16 (9), 373–378 (1998).
  • Fiehn O . Metabolomics-the link between genotypes and phenotypes. Plant Mol. Biol. 48 (1–2), 155–171 (2002).
  • Nicholson JK , LindonJC, HolmesE. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29 (11), 1181–1189 (1999).
  • Patti GJ , YanesO, SiuzdakG. Innovation: metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13 (4), 263–269 (2012).
  • Cajka T , FiehnO. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal. Chem. 88 (1), 524–545 (2016).
  • Naz S , VallejoM, GarciaA, BarbasC. Method validation strategies involved in non-targeted metabolomics. J. Chromatogr. A1353, 99–105 (2014).
  • Tzoulaki I , EbbelsTM, ValdesA, ElliottP, IoannidisJP. Design and analysis of metabolomics studies in epidemiologic research: a primer on -omic technologies. Am. J. Epidemiol. 180 (2), 129–139 (2014).
  • Dettmer K , AronovPA, HammockBD. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 26 (1), 51–78 (2007).
  • Sands BE . Biomarkers of inflammation in inflammatory bowel disease. Gastroenterology149 (5), 1275–1285 (2015).
  • Kell DB . Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol. 7 (3), 296–307 (2004).
  • Viswanathan CT , BansalS, BoothBet al. Quantitative bioanalytical methods validation and implementation: best practices for chromatographic and ligand binding assays. Pharm. Res. 24 (10), 1962–1973 (2007).
  • Rozet E , MariniRD, ZiemonsE, BoulangerB, HubertP. Advances in validation, risk and uncertainty assessment of bioanalytical methods. J. Pharm. Biomed. Anal. 55 (4), 848–858 (2011).
  • Food and Drug Administration . Guidance for Industry, Bioanalytical Method Validation. www.fda.gov/downloads/Drugs/Guidances/ucm070107.pdf.
  • European Medicine Agency . Guideline on Bioanalytical Method Validation. www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf.
  • International Conference on Harmonisation . Validation of Analytical Procedures: Text and Methodology Q2(R1). www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf.
  • Thompson M , EllisonSLR, WoodR. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC technical report). Pure Appl. Chem. 74 (5), 835–855 (2002).
  • Dunn WB , BroadhurstD, BegleyPet al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6 (7), 1060–1083 (2011).
  • Zhu ZJ , SchultzAW, WangJet al. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat. Protoc. 8 (3), 451–460 (2013).
  • Yuan M , BreitkopfSB, YangX, AsaraJM. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7 (5), 872–881 (2012).
  • Want EJ , WilsonID, GikaHet al. Global metabolic profiling procedures for urine using UPLC-MS. Nat. Protoc. 5 (6), 1005–1018 (2010).
  • Want EJ , MassonP, MichopoulosFet al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 8 (1), 17–32 (2013).
  • Dunn WB , WilsonID, NichollsAW, BroadhurstD. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis4 (18), 2249–2264 (2012).
  • Goodacre R , BroadhurstD, SmildeAKet al. Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics3, 231–241 (2007).
  • Sumner LW , AmbergA, BarrettDet al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics3 (3), 211–221 (2007).
  • Beisken S , EidenM, SalekRM. Getting the right answers: understanding metabolomics challenges. Expert Rev. Mol. Diagn. 15 (1), 97–109 (2015).
  • Hyotylainen T , OresicM. Bioanalytical techniques in nontargeted clinical lipidomics. Bioanalysis8 (4), 351–364 (2016).
  • Johnson CH , GonzalezFJ. Challenges and opportunities of metabolomics. J. Cell. Physiol. 227 (8), 2975–2981 (2012).
  • Arkin CF , WachtelMS. How many patiends are necessary to assess test performance. JAMA263, 275–278 (1990).
  • Bando K , KawaharaR, KunimatsuTet al. Influences of biofluid sample collection and handling procedures on GC-MS based metabolomic studies. J. Biosci. Bioeng. 110 (4), 491–499 (2010).
  • Liu L , AaJ, WangGet al. Differences in metabolite profile between blood plasma and serum. Anal. Biochem. 406 (2), 105–112 (2010).
  • Gil A , SiegelD, PermentierH, ReijngoudDJ, DekkerF, BischoffR. Stability of energy metabolites-An often overlooked issue in metabolomics studies: a review. Electrophoresis36 (18), 2156–2169 (2015).
  • Siegel D , PermentierH, BischoffR. Controlling detrimental effects of metal cations in the quantification of energy metabolites via ultrahigh pressure-liquid chromatography-electrospray-tandem mass spectrometry by employing acetylacetone as a volatile eluent modifier. J. Chromatogr. A1294, 87–97 (2013).
  • Mirnaghi FS , CaudyAA. Challenges of analyzing different classes of metabolites by a single analytical method. Bioanalysis6 (24), 3393–3416 (2014).
  • Wisniewski CA , WhiteJA, MichelCEet al. Optimal method of collection of first-void urine for diagnosis of Chlamydia trachomatis infection in men. J. Clin. Microbiol. 46 (4), 1466–1469 (2008).
  • Delanghe J , SpeeckaertM. Preanalytical requirements of urinalysis. Biochem. Med. (Zagreb)24 (1), 89–104 (2014).
  • Gika HG , WilsonID, TheodoridisGA. LC-MS-based holistic metabolic profiling. Problems, limitations, advantages, and future perspectives. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 966, 1–6 (2014).
  • Vigor C , Bertrand-MichelJ, PinotEet al. Non-enzymatic lipid oxidation products in biological systems: assessment of the metabolites from polyunsaturated fatty acids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 964, 65–78 (2014).
  • Kanani H , ChrysanthopoulosPK, KlapaMI. Standardizing GC-MS metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 871 (2), 191–201 (2008).
  • Giera M , LingemanH, NiessenWM. Recent advancements in the LC- and GC-based analysis of malondialdehyde (MDA): a brief overview. Chromatographia75 (9–10), 433–440 (2012).
  • Bernini P , BertiniI, LuchinatC, NincheriP, StaderiniS, TuranoP. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J. Biomol. NMR49 (3–4), 231–243 (2011).
  • Gika HG , TheodoridisGA, WilsonID. Liquid chromatography and ultra-performance liquid chromatography-mass spectrometry fingerprinting of human urine: sample stability under different handling and storage conditions for metabonomics studies. J. Chromatogr. A1189 (1–2), 314–322 (2008).
  • Lauridsen M , HansenSH, JaroszewskiJW, CornettC. Human urine as test material in 1H NMR-based metabonomics: recommendations for sample preparation and storage. Anal. Chem. 79 (3), 1181–1186 (2007).
  • Van De Merbel NC , De VriesR. Aging of biological matrices and its effect on bioanalytical method performance. Bioanalysis5 (19), 2393–2407 (2013).
  • Roux A , ThevenotEA, SeguinF, OlivierMF, JunotC. Impact of collection conditions on the metabolite content of human urine samples as analyzed by liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance spectroscopy. Metabolomics11 (5), 1095–1105 (2015).
  • Saude EJ , SykesBD. Urine stability for metabolomics studies: effects of preparation and storage. Metabolomics3 (1), 19–27 (2007).
  • Khamis MM , AdamkoDJ, El-AneedA. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom. Rev. doi: 10.1002/mas.21455 (2015) ( Epub ahead of print).
  • Kohler I , SchapplerJ, RudazS. Microextraction techniques combined with capillary electrophoresis in bioanalysis. Anal. Bioanal. Chem. 405 (1), 125–141 (2013).
  • Raterink RJ , LindenburgPW, VreekenRJ, RamautarR, HankemeierT. Recent developments in sample pre-treatment techniques for mass spectrometry-based metabolomics. TrAC61, 157–167 (2014).
  • Bruce SJ , TavazziI, ParisodV, RezziS, KochharS, GuyPA. Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal. Chem. 81 (9), 3285–3296 (2009).
  • Want EJ , O’mailleG, SmithCAet al. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal. Chem. 78 (3), 743–752 (2006).
  • Fernandez-Peralbo MA , Luque De CastroMD. Preparation of urine samples prior to targeted or untargeted metabolomics mass-spectrometry analysis. TrAC41, 75–85 (2012).
  • Kohler I , DerksRJ, GieraM. The rise of hydrophilic interaction chromatography in untargeted clinical metabolomics. LCGC Eur. 30 (1), 60–75 (2016).
  • Kohler I , SchapplerJ, RudazS. Highly sensitive capillary electrophoresis-mass spectrometry for rapid screening and accurate quantitation of drugs of abuse in urine. Anal. Chim. Acta780, 101–109 (2013).
  • Matyash V , LiebischG, KurzchaliaTV, ShevchenkoA, SchwudkeD. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 49 (5), 1137–1146 (2008).
  • Sarafian MH , GaudinM, LewisMRet al. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Anal. Chem. 86 (12), 5766–5774 (2014).
  • Van Eeckhaut A , LanckmansK, SarreS, SmoldersI, MichotteY. Validation of bioanalytical LC-MS/MS assays: evaluation of matrix effects. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877 (23), 2198–2207 (2009).
  • Krumpochova P , BruyneelB, MolenaarDet al. Amino acid analysis using chromatography-mass spectrometry: an inter platform comparison study. J. Pharm. Biomed. Anal. 114, 398–407 (2015).
  • Fang M , IvanisevicJ, BentonHPet al. Thermal degradation of small molecules: a global metabolomic investigation. Anal. Chem. 87 (21), 10935–10941 (2015).
  • Borman S . Heated dispute over analytical method. C&EN93 (42), 25–26 (2015).
  • Koek MM , JellemaRH, Van Der GreefJ, TasAC, HankemeierT. Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics7 (3), 307–328 (2011).
  • Mastrangelo A , FerrariniA, Rey-StolleF, GarciaA, BarbasC. From sample treatment to biomarker discovery: a tutorial for untargeted metabolomics based on GC-(EI)-Q-MS. Anal. Chim. Acta900, 21–35 (2015).
  • Naz S , Moreira Dos SantosDC, GarciaA, BarbasC. Analytical protocols based on LC-MS, GC-MS and CE-MS for nontargeted metabolomics of biological tissues. Bioanalysis6 (12), 1657–1677 (2014).
  • Kloos DP , GayE, LingemanHet al. Comprehensive gas chromatography-electron ionisation mass spectrometric analysis of fatty acids and sterols using sequential one-pot silylation: quantification and isotopologue analysis. Rapid Commun. Mass Spectrom. 28 (13), 1507–1514 (2014).
  • Fiehn O , KopkaJ, TretheweyRN, WillmitzerL. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 72 (15), 3573–3580 (2000).
  • Kloos D , LingemanH, MayborodaOA, DeelderAM, NiessenWM, GieraM. Analysis of biologically-active, endogenous carboxylic acids based on chromatography-mass spectrometry. TrAC61, 17–28 (2014).
  • Halket JM , ZaikinVG. Derivatization in mass spectrometry–1. Silylation. Eur. J. Mass. Spectrom (Chichester, Eng)9 (1), 1–21 (2003).
  • Villas-Boas SG , SmartKF, SivakumaranS, LaneGA. Alkylation or silylation for analysis of amino and non-amino organic acids by GC-MS?Metabolites1 (1), 3–20 (2011).
  • Spagou K , TsoukaliH, RaikosN, GikaH, WilsonID, TheodoridisG. Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies. J. Sep. Sci. 33 (6–7), 716–727 (2010).
  • Denoroy L , ZimmerL, RenaudB, ParrotS. Ultra high performance liquid chromatography as a tool for the discovery and the analysis of biomarkers of diseases: a review. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 927, 37–53 (2013).
  • Fekete S , VeutheyJL, GuillarmeD. Comparison of the most recent chromatographic approaches applied for fast and high resolution separations: theory and practice. J. Chromatogr. A1408, 1–14 (2015).
  • Fekete S , KohlerI, RudazS, GuillarmeD. Importance of instrumentation for fast liquid chromatography in pharmaceutical analysis. J. Pharm. Biomed. Anal. 87, 105–119 (2014).
  • Kloos DP , LingemanH, NiessenWM, DeelderAM, GieraM, MayborodaOA. Evaluation of different column chemistries for fast urinary metabolic profiling. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 927, 90–96 (2013).
  • Hemstrom P , IrgumK. Hydrophilic interaction chromatography. J. Sep. Sci. 29 (12), 1784–1821 (2006).
  • Buszewski B , NogaS. Hydrophilic interaction liquid chromatography (HILIC) – a powerful separation technique. Anal. Bioanal. Chem. 402 (1), 231–247 (2012).
  • Novakova L , HavlikovaL, VlckovaH. Hydrophilic interaction chromatography of polar and ionizable compounds by UHPLC. TrAC63, 55–64 (2014).
  • Periat A , KohlerI, VeutheyJL, GuillarmeD. Advances in hydrophilic interaction liquid chromatography for pharmaceutical analysis. LCGC Eur. 26 (5), 17–22 (2013).
  • Barbas C , MoraesEP, VillasenorA. Capillary electrophoresis as a metabolomics tool for non-targeted fingerprinting of biological samples. J. Pharm. Biomed. Anal. 55 (4), 823–831 (2011).
  • Ramautar R , De JongGJ. Recent developments in liquid-phase separation techniques for metabolomics. Bioanalysis6 (7), 1011–1026 (2014).
  • Zenobi R . Single-cell metabolomics: analytical and biological perspectives. Science342 (6163), 1243259 (2013).
  • Wuethrich A , HaddadPR, QuirinoJP. Chiral capillary electromigration techniques-mass spectrometry-hope and promise. Electrophoresis35 (1), 2–11 (2014).
  • Britz-Mckibbin P . Capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS)-based metabolomics. Methods Mol. Biol. 708, 229–246 (2011).
  • Lindenburg PW , HaselbergR, RozingG, RamautarR. Developments in interfacing designs for CE-MS: towards enabling tools for proteomics and metabolomics. Chromatographia78, 367–377 (2015).
  • Ramautar R , SomsenGW, De JongGJ. CE-MS for metabolomics: developments and applications in the period 2012–2014. Electrophoresis36 (1), 212–224 (2015).
  • Hirayama A , WakayamaM, SogaT. Metabolome analysis based on capillary electrophoresis – mass spectrometry. TrAC61, 215–222 (2014).
  • Harrison AG . Chemical Ionization Mass Spectrometry (2nd Edition). CRC Press LLC, Boca Raton, FL, USA (1992).
  • Quehenberger O , ArmandoAM, DennisEA. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochim. Biophys. Acta1811 (11), 648–656 (2011).
  • Wilm M . Principles of electrospray ionization. Mol. Cell. Proteomics10 (7), M111 009407 (2011).
  • Matuszewski BK , ConstanzerML, Chavez-EngCM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 75 (13), 3019–3030 (2003).
  • Jonasdottir HS , NicolardiS, JonkerWet al. Detection and structural elucidation of esterified oxylipids in human synovial fluid by electrospray ionization-fourier transform ion-cyclotron mass spectrometry and liquid chromatography-ion trap-MS(3): detection of esterified hydroxylated docosapentaenoic acid containing phospholipids. Anal. Chem. 85 (12), 6003–6010 (2013).
  • Pacchiarotta T , DerksRJ, Hurtado-FernandezEet al. Online spectral library for GC-atmospheric pressure chemical ionization-ToF MS. Bioanalysis5 (12), 1515–1525 (2013).
  • Hommerson P , KhanAM, De JongGJ, SomsenGW. Ionization techniques in capillary electrophoresis-mass spectrometry: principles, design, and application. Mass Spectrom. Rev. 30 (6), 1096–1120 (2011).
  • Li DX , GanL, BronjaA, SchmitzOJ. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review. Anal. Chim. Acta891, 43–61 (2015).
  • Dahinden CA , ClancyRM, HugliTE. Stereospecificity of leukotriene B4 and structure–function relationships for chemotaxis of human neutrophils. J. Immunol. 133 (3), 1477–1482 (1984).
  • Jonasdottir HS , PapanC, FabritzSet al. Differential mobility separation of leukotrienes and protectins. Anal. Chem. 87 (10), 5036–5040 (2015).
  • Chouinard CD , WeiMS, BeekmanCR, KempermanRH, YostRA. Ion mobility in clinical analysis: current progress and future perspectives. Clin. Chem. 62 (1), 124–133 (2016).
  • Baker PR , ArmandoAM, CampbellJL, QuehenbergerO, DennisEA. Three-dimensional enhanced lipidomics analysis combining UPLC, differential ion mobility spectrometry, and mass spectrometric separation strategies. J. Lipid Res. 55 (11), 2432–2442 (2014).
  • Basit A , PontisS, PiomelliD, ArmirottiA. Ion mobility mass spectrometry enhances low-abundance species detection in untargeted lipidomics. Metabolomics12, 50 (2016).
  • Lintonen TP , BakerPR, SuoniemiMet al. Differential mobility spectrometry-driven shotgun lipidomics. Anal. Chem. 86 (19), 9662–9669 (2014).
  • Kowlgi NG , ChhabraL. D-lactic acidosis: an underrecognized complication of short bowel syndrome. Gastroenterol. Res. Pract. 2015, 476215 (2015).
  • Struys EA . 2-Hydroxyglutarate is not a metabolite; D-2-hydroxyglutarate and L-2-hydroxyglutarate are!Proc. Natl Acad. Sci. USA110 (51), E4939 (2013).
  • Armstrong DW , ZhangB. Chiral stationary phases for HPLC. Anal. Chem. 73 (19), A557–A561 (2001).
  • Westerhuis JA , HoefslootHC, SmitSet al. Assessment of PLSDA cross validation. Metabolomics4, 81–89 (2008).
  • Hoye TR , JeffreyCS, ShaoF. Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons. Nat. Protoc. 2 (10), 2451–2458 (2007).
  • Daykin CA , CorcoranO, HansenSHet al. Application of directly coupled HPLC NMR to separation and characterization of lipoproteins from human serum. Anal. Chem. 73 (6), 1084–1090 (2001).
  • Akira K , MitomeH, ImachiM, ShidaY, MiyaokaH, HashimotoT. LC-NMR identification of a novel taurine-related metabolite observed in (1)H NMR-based metabonomics of genetically hypertensive rats. J. Pharm. Biomed. Anal. 51 (5), 1091–1096 (2010).
  • Psychogios N , HauDD, PengJet al. The human serum metabolome. PLoS ONE6 (2), e16957 (2011).
  • Bouatra S , AziatF, MandalRet al. The human urine metabolome. PLoS ONE8 (9), e73076 (2013).
  • Tomasi G , Van Den BergF, AnderssonC. Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J. Chemometrics18 (5), 231–241 (2004).
  • Savorani F , TomasiG, EngelsenSB. icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. J. Magn. Reson. 202 (2), 190–202 (2010).
  • Veselkov KA , LindonJC, EbbelsTMet al. Recursive segment-wise peak alignment of biological (1)h NMR spectra for improved metabolic biomarker recovery. Anal. Chem. 81 (1), 56–66 (2009).
  • Staab JM , O’connellTM, GomezSM. Enhancing metabolomic data analysis with Progressive Consensus Alignment of NMR Spectra (PCANS). BMC Bioinformatics11, 123 (2010).
  • De Meyer T , SinnaeveD, Van GasseBet al. NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. Anal. Chem. 80 (10), 3783–3790 (2008).
  • Anderson PE , MahleDA, DoomTE, ReoNV, DelrasoNJ, RaymerML. Dynamic adaptive binning: an improved quantification technique for NMR spectroscopic data. Metabolomics7 (2), 179–190 (2011).
  • Davis RA , CharltonAJ, GodwardJ, JonesSA, HarrisonM, WilsonJ. Adaptive binning: an improved binning method for metabolomics data using the undecimated wavelet transform. J. Chemolab. 85, 144–154 (2007).
  • Hao J , AstleW, De IorioM, EbbelsTM. BATMAN-an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model. Bioinformatics28 (15), 2088–2090 (2012).
  • Wishart DS , TzurD, KnoxCet al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 35, D521–D526 (2007).
  • Ulrich EL , AkutsuH, DoreleijersJFet al. BioMagResBank. Nucleic Acids Res. 36, D402–D408 (2008).
  • Cui Q , LewisIA, HegemanADet al. Metabolite identification via the Madison Metabolomics Consortium Database. Nat. Biotechnol. 26 (2), 162–164 (2008).
  • Fonville JM , MaherAD, CoenM, HolmesE, LindonJC, NicholsonJK. Evaluation of full-resolution J-resolved 1H NMR projections of biofluids for metabonomics information retrieval and biomarker identification. Anal. Chem. 82 (5), 1811–1821 (2010).
  • Lewis IA , SchommerSC, MarkleyJL. rNMR: open source software for identifying and quantifying metabolites in NMR spectra. Magn. Reson. Chem. 47 (Suppl. 1), S123–S126 (2009).
  • Xia J , BjorndahlTC, TangP, WishartDS. MetaboMiner-semi-automated identification of metabolites from 2D NMR spectra of complex biofluids. BMC Bioinformatics9, 507 (2008).
  • Van QN , IssaqHJ, JiangQet al. Comparison of 1D and 2D NMR spectroscopy for metabolic profiling. J. Proteome Res. 7 (2), 630–639 (2008).
  • Cloarec O , DumasME, CraigAet al. Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal. Chem. 77 (5), 1282–1289 (2005).
  • Smith R , VenturaD, PrinceJT. LC-MS alignment in theory and practice: a comprehensive algorithmic review. Brief. Bioinform. 16 (1), 104–117 (2015).
  • Lange E , TautenhahnR, NeumannS, GroplC. Critical assessment of alignment procedures for LC-MS proteomics and metabolomics measurements. BMC Bioinformatics9, 375 (2008).
  • Warrack BM , HnatyshynS, OttKHet al. Normalization strategies for metabonomic analysis of urine samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877 (5–6), 547–552 (2009).
  • Dieterle F , RossA, SchlotterbeckG, SennH. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem. 78 (13), 4281–4290 (2006).
  • Chen Y , ShenG, ZhangRet al. Combination of injection volume calibration by creatinine and MS signals’ normalization to overcome urine variability in LC-MS-based metabolomics studies. Anal. Chem. 85 (16), 7659–7665 (2013).
  • Van Den Berg RA , HoefslootHC, WesterhuisJA, SmildeAK, Van Der WerfMJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics7, 142 (2006).
  • Teahan O , GambleS, HolmesEet al. Impact of analytical bias in metabonomic studies of human blood serum and plasma. Anal. Chem. 78 (13), 4307–4318 (2006).
  • Kjeldahl K , RamsusB. Some common misunderstandings in chemometrics. J. Chemometrics24, 558–564 (2010).
  • Worley B , PowersR. Multivariate analysis in metabolomics. Curr. Metabol. 1 (1), 92–107 (2013).
  • Christin C , HoefslootHC, SmildeAKet al. A critical assessment of feature selection methods for biomarker discovery in clinical proteomics. Mol. Cell. Proteomics12 (1), 263–276 (2013).
  • Leichtle AB , DufourJF, FiedlerGM. Potentials and pitfalls of clinical peptidomics and metabolomics. Swiss Med. Wkly143, w13801 (2013).
  • Lin D , HollanderZ, MeredithA, McmanusBM. Searching for ‘omic’ biomarkers. Can. J. Cardiol. 25 (Suppl. A), A9–A14 (2009).
  • Pepe MS , FanJ, SeymourCW, LiC, HuangY, FengZ. Biases introduced by choosing controls to match risk factors of cases in biomarker research. Clin. Chem. 58 (8), 1242–1251 (2012).
  • Dona AC , CoffeyS, FigtreeG. Translational and emerging clinical applications of metabolomics in cardiovascular disease diagnosis and treatment. Eur. J. Prev. Cardiol. doi: 10.1177/2047487316645469 (2016) ( Epub ahead of print).
  • Abu Bakar MH , SarmidiMR, ChengKKet al. Metabolomics – the complementary field in systems biology: a review on obesity and Type 2 diabetes. Mol. Biosyst. 11 (7), 1742–1774 (2015).
  • Roberts LD , KoulmanA, GriffinJL. Towards metabolic biomarkers of insulin resistance and Type 2 diabetes: progress from the metabolome. Lancet Diabetes Endocrinol. 2 (1), 65–75 (2014).
  • Priori R , ScrivoR, BrandtJet al. Metabolomics in rheumatic diseases: the potential of an emerging methodology for improved patient diagnosis, prognosis, and treatment efficacy. Autoimmun. Rev. 12 (10), 1022–1030 (2013).
  • Bhargava P , CalabresiPA. Metabolomics in multiple sclerosis. Mult. Scler. 22 (4), 451–460 (2016).
  • Haas CT , RoeJK, PollaraG, MehtaM, NoursadeghiM. Diagnostic ‘omics’ for active tuberculosis. BMC Med. 14, 37 (2016).
  • Hassan-Smith G , WallaceGR, DouglasMR, SinclairAJ. The role of metabolomics in neurological disease. J. Neuroimmunol. 248 (1–2), 48–52 (2012).
  • Gentile G , RemuzziG. Novel biomarkers for renal diseases? None for the moment (but One). J. Biomol. Screen. doi: 10.1177/1087057116629916 (2016) ( Epub ahead of print).
  • Trezzi JP , VlassisN, HillerK. The role of metabolomics in the study of cancer biomarkers and in the development of diagnostic tools. Adv. Exp. Med. Biol. 867, 41–57 (2015).
  • Mordente A , MeucciE, MartoranaGE, SilvestriniA. Cancer biomarkers discovery and validation: state of the art, problems and future perspectives. Adv. Exp. Med. Biol. 867, 9–26 (2015).
  • Shackleton CH . Role of a disordered steroid metabolome in the elucidation of sterol and steroid biosynthesis. Lipids47 (1), 1–12 (2012).
  • Lynn Henty N , HayesDF. Cancer biomarkers. Mol. Oncol. 6 (2), 140–146 (2012).
  • Duffy MJ , CrownJ. A personalized approach to cancer treatment: how biomarkers can help. Clin. Chem. 54 (11), 1770–1779 (2008).
  • Poinsignon V , MercierL, NakabayashiKet al. Quantitation of isocitrate dehydrogenase (IDH)-induced D and L enantiomers of 2-hydroxyglutaric acid in biological fluids by a fully validated liquid tandem mass spectrometry method, suitable for clinical applications. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1022, 290–297 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.