194
Views
0
CrossRef citations to date
0
Altmetric
Review

Bioanalytical Methods for The Detection of Antidiabetic Drugs: A Review

, , , , &
Pages 2015-2025 | Received 23 Aug 2017, Accepted 12 Oct 2017, Published online: 24 Nov 2017

References

  • World Health Organization . Global reports on diabetes (2016). http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf.
  • Pratley RE . The early treatment of Type 2 diabetes. Am. J. Med. 126 (9 Suppl. 1), S2–S9 (2013).
  • American Diabetes Association . Diagnosis and classification of diabetes mellitus. Diabetes Care37 (Suppl. 1), S81–S90 (2014).
  • Maruthur NM , TsengE, HutflessSet al. Diabetes medications as monotherapy or metformin-based combination therapy for Type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med. 164 (11), 740–751 (2016).
  • Inzucchi SE . Oral antihyperglycemic therapy for Type 2 diabetes: scientific review. JAMA287 (3), 360–372 (2002).
  • Krentz AJ , BaileyCJ. Oral antidiabetic agents: current role in Type 2 diabetes mellitus. Drugs65 (3), 385–411 (2005).
  • Marin-Penalver JJ , Martin-TimonI, Sevillano-CollantesC, del Canizo-GomezFJ. Update on the treatment of Type 2 diabetes mellitus. World J. Diabetes7 (17), 354–395 (2016).
  • Kang JS , LeeMH. Overview of therapeutic drug monitoring. Korean J. Intern. Med. 24 (1), 1–10 (2009).
  • Shah VP , MidhaKK, FindlayJWet al. Bioanalytical method validation – a revisit with a decade of progress. Pharm. Res. 17 (12), 1551–1557 (2000).
  • Aburuz S , MillershipJ, McElnayJ. The development and validation of liquid chromatography method for the simultaneous determination of metformin and glipizide, gliclazide, glibenclamide or glimperide in plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 817 (2), 277–286 (2005).
  • Agrawal YK , GogoiPJ, MannaK, BhattHG, JainVK. A supercritical fluid chromatography/tandem mass spectrometry method for the simultaneous quantification of metformin and gliclazide in human plasma. Indian J. Pharm. Sci. 72 (1), 50–57 (2010).
  • Attimarad MV , NairAB, AldhubaibBE. Development of liquid chromatographic method for the simultaneous determination of metformin and miglitol in human plasma: application to pharmacokinetic studies. J. Iran. Chem. Soc. 12 (9), 1629–1636 (2015).
  • Ben-Hander GM , MakahlehA, SaadB, SalehMI, ChengKW. Sequential hollow-fiber liquid phase microextraction for the determination of rosiglitazone and metformin hydrochloride (anti-diabetic drugs) in biological fluids. Talanta131, 590–596 (2015).
  • Binz TM , VillaniN, NeelsH, SchneiderS. Rapid extraction, identification and quantification of oral hypoglycaemic drugs in serum and hair using LC–MS/MS. Forensic Sci. Int. 223 (1–3), 119–124 (2012).
  • Chen LY , ZhouZF, ShenM, MaAD. Simultaneous determination and pharmacokinetic study of metformin and rosiglitazone in human plasma by HPLC-ESI-MS. J. Chromatogr. Sci. 49 (2), 94–100 (2011).
  • Di Rago M , SaarE, RoddaLNet al. Fast targeted analysis of 132 acidic and neutral drugs and poisons in whole blood using LC–MS/MS. Forensic Sci. Int. 243, 35–43 (2014).
  • Ding CG , ZhouZ, GeQH, ZhiXJ, MaLL. Simultaneous determination of metformin and glipizide in human plasma by liquid chromatography-tandem mass spectrometry. Biomed. Chromatogr. 21 (2), 132–138 (2007).
  • Georgita C , AlbuF, DavidV, MedvedoviciA. Simultaneous assay of metformin and glibenclamide in human plasma based on extraction-less sample preparation procedure and LC/(APCI)MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 854 (1–2), 211–218 (2007).
  • Gonzalez O , AlonsoRM, FerreirosN, WeinmannW, ZimmermannR, DresenS. Development of an LC–MS/MS method for the quantitation of 55 compounds prescribed in combined cardiovascular therapy. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879 (3–4), 243–252 (2011).
  • Hefnawy MM , SultanMA, Al-JoharHI, KassemMG, Aboul-EneinHY. Multi-objective optimization strategy based on desirability functions used for electrophoratic separation and quantification of rosiglitazone and glimepiride in plasma and formulations. Drug Test Anal. 4 (1), 39–47 (2012).
  • Hess C , MusshoffF, MadeaB. Simultaneous identification and validated quantification of 11 oral hypoglycaemic drugs in plasma by electrospray ionisation liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 400 (1), 33–41 (2011).
  • Hoizey G , LamiableD, TrenqueTet al. Identification and quantification of 8 sulfonylureas with clinical toxicology interest by liquid chromatography-ion-trap tandem mass spectrometry and library searching. Clin. Chem. 51 (9), 1666–1672 (2005).
  • Jagadeesh B , BharathiDV, PankajC, NarayanaVS, VenkateswaruluV. Development and validation of highly selective and robust method for simultaneous estimation of pioglitazone, hydroxypioglitazone and metformin in human plasma by LC–MS/MS: application to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 930, 136–145 (2013).
  • Jingar JN , RajputSJ, DasandiB, RathnamS. Development and validation of LC–UV for simultaneous estimation of rosiglitazone and glimepride in human plasma. Chromatographia67 (11–12), 951–955 (2008).
  • Li N , DengY, QinF, YuJ, LiFM. Simultaneous quantification of metformin and glipizide in human plasma by high-performance liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study. Biomed. Chromatogr. 27 (2), 191–196 (2013).
  • Lin ZPJ , Desai-KriegerD, ShumL. Simultaneous determination of glipizide and rosiglitazone unbound drug concentrations in plasma by equilibrium dialysis and liquid chromatography–tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 801 (2), 265–272 (2004).
  • Magni F , MarazziniL, PereiraS, MontiL, KienleMG. Identification of sulfonylureas in serum by electrospray mass spectrometry. Anal. BioChem. 282 (1), 136–141 (2000).
  • Maier V , ZnalezionaJ, JirovskyD, SkopalovaJ, PetrJ, SevcikJ. Determination of antihyperglycemic drugs in nanomolar concentration levels by micellar electrokinetic chromatography with non-ionic surfactant. J. Chromatogr. A1216 (20), 4492–4498 (2009).
  • Maurer HH , KratzschC, KraemerT, PetersFT, WeberAA. Screening, library-assisted identification and validated quantification of oral antidiabetics of the sulfonylurea-type in plasma by atmospheric pressure chemical ionization liquid chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 773 (1), 63–73 (2002).
  • Mistri HN , JangidAG, ShrivastavPS. Liquid chromatography tandem mass spectrometry method for simultaneous determination of antidiabetic drugs metformin and glyburide in human plasma. J. Pharmaceut. Biomed. 45 (1), 97–106 (2007).
  • Ni XJ , WangZZ, ShangDWet al. Simultaneous determination of glimepiride and pioglitazone in human plasma by liquid chromatography-tandem mass spectrometry and its application to pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 960, 247–252 (2014).
  • Pontarolo R , GimenezAC, De FranciscoTMG, RibeiroRP, FontesFLD, GasparettoJC. Simultaneous determination of metformin and vildagliptin in human plasma by a HILIC-MS/MS method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 965, 133–141 (2014).
  • Ranetti MC , IonescuM, HinescuLet al. Validation of a HPLC method for the simultaneous analysis of metformin and gliclazide in human plasma. Farmacia57 (6), 728–735 (2009).
  • Rashid A , AhmadM, MinhasMU, HassanIJ, MalikMZ. Pharmacokinetic studies of metformin and glibenclamide in normal human volunteers. Pak J. Pharm. Sci. 27 (1), 153–159 (2014).
  • Reddy S , AhmedI, AhmadI, MukhopadhyayA, ThangamS. Development and validation of a method for simultaneous estimation of metformin and sitagliptin in human plasma by LC–MS–MS and its application in a bioequivalence study. J. Chromatogr. Sci. 53 (9), 1549–1556 (2015).
  • Sengupta P , BhaumikU, GhoshAet al. LC–MS–MS development and validation for simultaneous quantitation of metformin, glimepiride and pioglitazone in human plasma and its application to a bioequivalence study. Chromatographia69 (11–12), 1243–1250 (2009).
  • Shantikumar S , SatheeshkumarN, PrasanthB, LingeshA, PaulD, SrinivasR. A sensitive and selective liquid chromatography mass spectrometry method for simultaneous estimation of anti-diabetic drugs inhibiting DPP-4 enzyme in human plasma: overcoming challenges associated with low recovery and sensitivity. Anal. Methods7 (15), 6198–6206 (2015).
  • Sorensen LK . Determination of metformin and other biguanides in forensic whole blood samples by hydrophilic interaction liquid chromatography-electrospray tandem mass spectrometry. Biomed. Chromatogr. 26 (1), 1–5 (2012).
  • Tirumala R , LakshmiKS. Quantification of gliclazide, glipizide, glimepiride, pioglitazone, repaglinide and rosiglitazone in human plasma using reverse-phase high-performance liquid chromatography. J. Pharm. Pharmacol. A102–A103 (2009).
  • Viana IMD , LimaPDR, SoaresCDV, FernandesC. Simultaneous determination of oral antidiabetic drugs in human plasma using microextraction by packed sorbent and high-performance liquid chromatography. J. Pharmaceut. Biomed. 96, 241–248 (2014).
  • Yardimci C , OzaltinN, GurlekA. Simultaneous determination of rosiglitazone and metformin in plasma by gradient liquid chromatography with UV detection. Talanta72 (4), 1416–1422 (2007).
  • Zhang L , TianY, ZhangZJ, ChenY. Simultaneous determination of metformin and rosiglitazone in human plasma by liquid chromatography/tandem mass spectrometry with electrospray ionization: application to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 854 (1–2), 91–98 (2007).
  • Zhong GP , BiHC, ZhouSF, ChenX, HuangM. Simultaneous determination of metformin and gliclazide in human plasma by liquid chromatography-tandem mass spectrometry: application to a bioequivalence study of two formulations in healthy volunteers. J. Mass Spectrom40 (11), 1462–1471 (2005).
  • Chen Y , GuoZP, WangXY, QiuCG. Sample preparation. J. Chromatogr. A1184 (1–2), 191–219 (2008).
  • Novakova L , VlckovaH. A review of current trends and advances in modern bio-analytical methods: chromatography and sample preparation. Anal. Chim. Acta656 (1–2), 8–35 (2009).
  • Kolte BL , RautBB, DeoAA, BagoolMA, ShindeDB. Liquid chromatographic method for the determination of rosiglitazone in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 788 (1), 37–44 (2003).
  • Ryan BJ . Differential precipitation and solubilization of proteins. Methods Mol. Biol. 681, 203–213 (2011).
  • Alshammari TM , Al-HassanAA, HaddaTB, AljofanM. Comparison of different serum sample extraction methods and their suitability for mass spectrometry analysis. Saudi Pharm. J. 23 (6), 689–697 (2015).
  • Hennion MC . Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. J. Chromatogr. A856 (1–2), 3–54 (1999).
  • Blahova E , BrandsteterovaT. Approaches in sample handling before HPLC analysis of complex matrices. Abst. Pap. Chem. Soc. 58 (5), 362–373 (2004).
  • Orlando RM , CordeiroDD, MathiasAEB, RezendeKR, GilES. Pré-tratamento de amostras. RVS3, 122–139 (2009).
  • Wal PKB , BhandariA, RaiAK, WalA. Bioanalytical method development – determination of drugs in biological fluids. J. Pharm. Sci. Technol. 2 (10), 10 (2010).
  • Al Azzam KM , MakahleahA, SaadB, MansorSM. Hollow fiber liquid-phase microextraction for the determination of trace amounts of rosiglitazone (anti-diabetic drug) in biological fluids using capillary electrophoresis and high performance liquid chromatographic methods. J. Chromatogr. A1217 (23), 3654–3659 (2010).
  • Rajalingam D , LoftisC, XuJJ, KumarTK. Trichloroacetic acid-induced protein precipitation involves the reversible association of a stable partially structured intermediate. Protein Sci. 18 (5), 980–993 (2009).
  • Polson C , SarkarP, IncledonB, RaguvaranV, GrantR. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 785 (2), 263–275 (2003).
  • Cantwell FF , LosierM. Liquid–liquid extraction. In : Comprehensive Analytical Chemistry. BarceloD ( Ed.). Elsevier, Spain, 297–340 (2002).
  • Chen Y , GuoZ, WangX, QiuC. Sample preparation. J. Chromatogr. A1184 (1–2), 191–219 (2008).
  • Tavakoli L , YaminiY, EbrahimzadehH, ShariatiS. Homogeneous liquid–liquid extraction for preconcentration of polycyclic aromatic hydrocarbons using a water/methanol/chloroform ternary component system. J. Chromatogr. A1197, 133–138 (2008).
  • Jain VK , PillapSG, MandalHC. Liquid–liquid extraction, preconcentration and transport studies of Lanthanum (III) with Calix [4] resorcinarene-hydroxamic acid (C4RAHA). J. Chil. Chem. Soc. 52 (2), 1177–1181 (2007).
  • Wells MJM . Principles of extraction and the extraction of semivolatile organics from liquids. In : Sample Preparation Techniques in Analytical Chemistry. MitraS ( Ed.). Wiley & Sons, NJ, USA, 37–102 (2003).
  • Kataoka H . New trends in sample preparation for clinical and pharmaceutical analysis. Trend Analyt. Chem. 22 (4), 232–244 (2003).
  • Sarafraz-Yazdi A , AmiriA. Liquid-phase microextraction. Trend Analyt. Chem. 29 (1), 1–14 (2010).
  • He Y , LeeHK. Liquid-phase microextraction in a single drop of organic solvent by using a conventional microsyringe. Anal. Chem. 69 (22), 4634–4640 (1997).
  • Pedersen-Bjergaard S , RasmussenKE. Liquid-phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid–liquid extraction. J. Chromatogr. A1184 (1–2), 132–142 (2008).
  • Pedersen-Bjergaard S , RasmussenKE. Liquid-phase microextraction and capillary electrophoresis of acidic drugs. Electrophoresis21 (3), 579–585 (2000).
  • Tahmasebi E , YaminiY, SalehA. Extraction of trace amounts of pioglitazone as an anti-diabetic drug with hollow fiber liquid phase microextraction and determination by high-performance liquid chromatography–ultraviolet detection in biological fluids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877 (20–21), 1923–1929 (2009).
  • Hadi H , MakahlehA, SaadB. Hollow fiber liquid-phase microextraction combined with high performance liquid chromatography for the determination of trace mitiglinide in biological fluids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 895–896, 131–136 (2012).
  • Yamashita K , MurakamiH, OkudaT, MotohashiM. High-performance liquid chromatographic determination of pioglitazone and its metabolites in human serum and urine. J. Chromatogr. B Biomed. Appl. 677 (1), 141–146 (1996).
  • Abdel-Rehim M . Microextraction by packed sorbent (MEPS): a tutorial. Anal. Chim. Acta701 (2), 119–128 (2011).
  • De Oliveira EC , MullerEI, AbadF, DallarosaJ, AdrianoC. Internal standard versus external standard calibration: an uncertainty case study of a liquid chromatography analysis. Quim Nova33 (4), 984–987 (2010).
  • European Medicines Agency . Guideline on Bioanalytical Method Validation. London, UK (2011). www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf.
  • Brasil . RDC 27 de 17 de maio de 2012: Dispõe sobre os requisitos mínimos para a validação de métodos bioanalíticos empregados em estudos com fins de registro de medicamentos (2012). http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2012/rdc0027_17_05_2012.html.
  • Belleville T , NoeG, HuillardOet al. A HPLC-fluorescence method for the quantification of abiraterone in plasma from patients with metastatic castration-resistant prostate cancer. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 989, 86–90 (2015).
  • Vella J , BusuttilF, BartoloNSet al. A simple HPLC–UV method for the determination of ciprofloxacin in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 989, 80–85 (2015).
  • Al-Hroub H , AlkhawajaB, AlkhawajaE, ArafatT. Sensitive and rapid HPLC–UV method with back-extraction step for the determination of sildenafil in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1009–1010, 1–6 (2016).
  • Giuliani P , ZuccariniM, BuccellaSet al. Development of a new HPLC method using fluorescence detection without derivatization for determining purine nucleoside phosphorylase activity in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1009–1010, 114–121 (2016).
  • Khan A , IqbalZ, KhadraIet al. Simultaneous determination of domperidone and Itopride in pharmaceuticals and human plasma using RP-HPLC/UV detection: method development, validation and application of the method in in-vivo evaluation of fast dispersible tablets. J. Pharm. Biomed. Anal. 121, 6–12 (2016).
  • Nannetti G , PagniS, ParisiSG, AlbertiA, LoregianA, PaluG. Development of a simple HPLC–UV method for the determination of the hepatitis C virus inhibitor simeprevir in human plasma. J. Pharm. Biomed. Anal. 121, 197–203 (2016).
  • Serralheiro A , AlvesG, FortunaA, RochaM, FalcaoA. First HPLC–UV method for rapid and simultaneous quantification of phenobarbital, primidone, phenytoin, carbamazepine, carbamazepine-10,11-epoxide, 10,11-trans-dihydroxy-10,11-dihydrocarbamazepine, lamotrigine, oxcarbazepine and licarbazepine in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 925, 1–9 (2013).
  • Helmy SA , El BedaiwyHM. A new and simple HPLC method for determination of etamsylate in human plasma and its application to pharmacokinetic study in healthy adult male volunteers. Saudi Pharm. J. 21 (4), 405–410 (2013).
  • Aghazadeh-Habashi A , AsgharW, JamaliF. Simultaneous determination of selected eicosanoids by reversed-phase HPLC method using fluorescence detection and application to rat and human plasma, and rat heart and kidney samples. J. Pharm. Biomed. Anal. 110, 12–19 (2015).
  • Cook SF , KingAD, van den AnkerJN, WilkinsDG. Simultaneous quantification of acetaminophen and five acetaminophen metabolites in human plasma and urine by high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry: Method validation and application to a neonatal pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1007, 30–42 (2015).
  • Nadella TR , SuryadevaraV, LankapalliSR, MandavaVB, BandarupalliD. LC–MS/MS method development for quantification of busulfan in human plasma and its application in pharmacokinetic study. J. Pharm. Biomed. Anal. 120, 168–174 (2015).
  • Schellinger AP , CarrPW. Isocratic and gradient elution chromatography: a comparison in terms of speed, retention reproducibility and quantitation. J. Chromatogr. A1109 (2), 253–266 (2006).
  • Cabo-Calvet E , Ortiz-BolsicoC, Baeza-BaezaJJ, García-Alvarez-CoqueMC. Description of the retention and peak profile for chromolith columns in isocratic and gradient elution using mobile phase composition and flow rate as factors. Chromatography1 (4), 194–210 (2014).
  • International Union of Pure and Applied Chemistry . Compendium of Chemical Terminology Gold Book: Version 2.3.3 (2014). http://goldbook.iupac.org/pdf/goldbook.pdf.
  • USP. The United States Pharmacopeia (37 - NF 32). United States Pharmacopeial Convention, MD, USA (2014).
  • Webster GK , DiazAR, SeibertDS, WeekleyBS, JacksonJD. Plate number requirements for establishing method suitability. J. Chromatogr. Sci. 43 (2), 67–72 (2005).
  • Snyder LR , KirklandJJ, DolanJW. Basic concepts and the control of separation. In : Introduction to Modern Liquid Chromatography (3rd Edition). Wiley & Sons, NJ, USA, 27 (2009).
  • Nikitas P , Pappa-LouisiA, PapachristosK. Optimisation technique for stepwise gradient elution in reversed-phase liquid chromatography. J. Chromatogr. A1033 (2), 283–289 (2004).
  • Food and Drug Administration . Reviewer guidance: validation of chromatographic methods (1994). www.fda.gov/downloads/Drugs/Guidances/UCM134409.pdf.
  • Lim CK , LordG. Current developments in LC–MS for pharmaceutical analysis. Biol. Pharm. Bull. 25 (5), 547–557 (2002).
  • Dass C . Fundamentals of Contemporary Mass Spectrometry. John Wiley & Sons, Inc., NJ, USA (2007).
  • Korfmacher WA . Principles and applications of LC–MS in new drug discovery. Drug Discov. Today10 (20), 1357–1367 (2005).
  • Chiaradia MC , CollinsCH, JardimICSF. The state of the art of chromatography associated with the tandem mass spectrometry for toxic compound analyses in food. Quim. Nova31 (3), 623–636 (2008).
  • Hopfgartner G , BourgogneE. Quantitative high-throughput analysis of drugs in biological matrices by mass spectrometry. Mass Spectrom. Rev. 22 (3), 195–214 (2003).
  • Watson JT , SparkmanOD. Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies to Data Interpretation (4th Edition). John Wiley & Sons Ltd, Chichester, UK (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.