352
Views
0
CrossRef citations to date
0
Altmetric
Review

Determination of Morphine and Its Metabolites in the Biological Samples: An Updated Review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1161-1194 | Received 19 Mar 2020, Accepted 15 Jul 2020, Published online: 06 Aug 2020

References

  • Christrup LL . Morphine metabolites. Acta Anaesthesiol. Scand.41(1), 116–122 (1997).
  • Lugo RA , KernSE. Clinical pharmacokinetics of morphine. J. Pain Palliat. Care Pharmacother.16(4), 5–18 (2002).
  • Pharmacists ASoH-S . Morphine sulfate. Stat (2015).
  • Rockwood CA . Rockwood and Wilkins' fractures in childrenLippincott Williams & Wilkins, PA, USA (2010).
  • Hong D , FloodP , DiazG. The side effects of morphine and hydromorphone patient-controlled analgesia. Anesth. Analg.107(4), 1384–1389 (2008).
  • Schulz M , SchmoldtA. Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Pharmazie58(7), 447–474 (2003).
  • Etemadi A , PoustchiH , CalafatAMet al. Opiate and tobacco use and exposure to carcinogens and toxicants in Golestan Cohort Study. Cancer Epidemiol. Biomarkers Pre.29(3), 650–658 (2020).
  • Afshari M , JanbabaeiG , BahramiMA , MoosazadehM. Opium and bladder cancer: a systematic review and meta-analysis of the odds ratios for opium use and the risk of bladder cancer. PLoS ONE12(6), e0178527 (2017).
  • Kamangar F , ShakeriR , MalekzadehR , IslamiF. Opium use: an emerging risk factor for cancer?Lancet Oncol.15(2), e69–e77 (2014).
  • Dinis-Oliveira RJ . Metabolism and metabolomics of opiates: a long way of forensic implications to unravel. J. Forensic Leg. Med.61, 128–140 (2019).
  • Andersen G , ChristrupL , SjøgrenP. Relationships among morphine metabolism, pain and side effects during long-term treatment: an update. J. Pain Symptom Manage.25(1), 74–91 (2003).
  • De S , ChoudharyR , MadhuriR. Determination of morphine in urine. In: Applications of Ion Exchange Materials in Biomedical Industries.Springer,29–70 (2019).
  • Clauwaert KM , Van BocxlaerJF , LambertWE , DeLeenheer AP. Segmental analysis for cocaine and metabolites by HPLC in hair of suspected drug overdose cases. Forensic Sci. Int.110(3), 157–166 (2000).
  • Verstraete AG . Detection times of drugs of abuse in blood, urine, and oral fluid. Ther. Drug Monit.26(2), 200–205 (2004).
  • Caplan YH , GoldbergerBA. Alternative specimens for workplace drug testing. J. Anal. Toxicol.25(5), 396–399 (2001).
  • Ketola RA , KriikkuP. Drug concentrations in post-mortem specimens. Drug Test. Anal.11(9), 1338–1357 (2019).
  • Cox D , JuferPhipps RA , LevineB , JacobsA , FowlerD. Distribution of phencyclidine into vitreous humor. J. Anal. Toxicol.31(8), 537–539 (2007).
  • Watterson JH , DesrosiersNA , BetitCC , DeanD , WymanJF. Relative distribution of drugs in decomposed skeletal tissue. J. Anal. Toxicol.34(8), 510–515 (2010).
  • Rahimpour E , KhoubnasabjafariM , Jouyban-GharamalekiV , JouybanA. Non-volatile compounds in exhaled breath condensate: review of methodological aspects. Anal. Bioanal. Chem.410(25), 6411–6440 (2018).
  • Hansen SH . Sample preparation and separation techniques for bioanalysis of morphine and related substances. J. Sep. Sci.32(5–6), 825–834 (2009).
  • Türker AR . New sorbents for solid-phase extraction for metal enrichment. Clean Soil Air Water35(6), 548–557 (2007).
  • Boojaria A , MasrourniaM , GhorbaniH , EbrahimitalabA , MiandarhoieM. Silane modified magnetic nanoparticles as a novel adsorbent for determination of morphine at trace levels in human hair samples by high-performance liquid chromatography with diode array detection. Forensic Sci. Med. Pathol.11(4), 497–503 (2015).
  • Ebrahimi Rahmani M , AnsariM , KazemipourM , NateghiM. Selective extraction of morphine from biological fluids by magnetic molecularly imprinted polymers and determination using UHPLC with diode array detection. J. Sep. Sci.41(4), 958–965 (2018).
  • Szkutnik-Fiedler D , GrześkowiakE , GacaM , BorowiczM. HPLC-UV determination of morphine in human plasma and its application to the clinical study. Acta Pol. Pharm.68(4), 473–479 (2011).
  • Mashayekhi S , Ghandforoush-SattariM , HainR. Rapid and sensitive quantitation of morphine using HPLC with electrochemical detection. J. Clin. Pharm. Ther.33(4), 419–427 (2008).
  • Abdolmohammad-Zadeh H , ZamaniA , ShamsiZ. Preconcentration of morphine and codeine using a magnetite/reduced graphene oxide/silver nano-composite and their determination by high-performance liquid chromatography. J. Chromatogr. A1590, 2–9 (2019).
  • Soltani MD , TaherMA , BehzadiM , FazeliradH. Synthesis, characterization and application of magnetic carbon nanotubes for the simultaneous extraction and high performance liquid chromatographic determination of codeine and morphine in human urine, blood serum, opium and tablet samples. Sens. Actuat. A Phys.280, 31–37 (2018).
  • Dehnavi F , DadfarniaS , ShabaniAH , BabaeiA. Dispersive liquid–liquid microextraction based on solidification of floating organic drop for isolation and determination of opium alkaloids. J. Anal. Chem.73(8), 765–770 (2018).
  • Oliveira A , CarvalhoF , PinhoPG , RemiãoF , MedeirosR , Dinis-OliveiraRJ. Quantification of morphine and its major metabolites M3G and M6G in antemortem and postmortem samples. Biomed. Chromatogr.28(9), 1263–1270 (2014).
  • Ahmadi-Jouibari T , FattahiN , ShamsipurM , PirsahebM. Dispersive liquid–liquid microextraction followed by high-performance liquid chromatography–ultraviolet detection to determination of opium alkaloids in human plasma. J. Pharm. Biomed. Anal.85, 14–20 (2013).
  • Kiss B , PopaD-S , BojitaM , LoghinF. Development and validation of a hpLC–DAD/fld method for the determination of mdma, mda, methamphetamine, morphine, morphine-glucuronides and 6-monoacetylmorphine in human plasma. Rev. Roum. Chim.54(10), 833-+ (2009).
  • Fernandez P , LagoM , LorenzoR , CarroA , BermejoA , TaberneroM. Optimization of a rapid microwave-assisted extraction method for the simultaneous determination of opiates, cocaine and their metabolites in human hair. J. Chromatogr. B877(18–19), 1743–1750 (2009).
  • Fernáindez P , LagoM , LorenzoRA , CarroAM , BermejoAM , TaberneroMJ. Microwave-assisted extraction and HPLC–DAD determination of drugs of abuse in human plasma. J. Anal. Toxicol.31(7), 388–393 (2007).
  • Fernández P , MoralesL , VázquezC , LagoM , BermejoA. Comparison of two extraction procedures for determination of drugs of abuse in human saliva by high-performance liquid chromatography. J. Appl. Toxicol.28(8), 998–1003 (2008).
  • Fernández P , SeoaneS , VázquezC , TaberneroMJ , CarroAM , LorenzoRA. Chromatographic determination of drugs of abuse in vitreous humor using solid-phase extraction. J. Appl. Toxicol.33(8), 740–745 (2013).
  • Fernández P , SeoaneS , VázquezC , BermejoAM , CarroAM , LorenzoRA. A rapid analytical method based on microwave-assisted extraction for the determination of drugs of abuse in vitreous humor. Anal. Bioanal. Chem.401(7), 2177 (2011).
  • Fernández P , GonzálezM , RegenjoMet al. Analysis of drugs of abuse in human plasma using microextraction by packed sorbents and ultra-high-performance liquid chromatography. J. Chromatogr. A1485, 8–19 (2017).
  • Anzillotti L , OdoardiS , Strano-RossiS. Cleaning up blood samples using a modified “QuEChERS” procedure for the determination of drugs of abuse and benzodiazepines by UPLC–MSMS*. Forensic Sci. Int.243, 99–106 (2014).
  • Kristoffersen L , LangødegårdM , GaareK , AmundsenI , TerlandM , StrandD. Determination of 12 commonly found compounds in DUID cases in whole blood using fully automated supported liquid extraction and UHPLC–MS/MS. J. Chromatogr. B1093, 8–23 (2018).
  • Bjørk MK , SimonsenKW , AndersenDWet al. Quantification of 31 illicit and medicinal drugs and metabolites in whole blood by fully automated solid-phase extraction and ultra-performance liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem.405(8), 2607–2617 (2013).
  • Bjørk MK , NielsenMK , MarkussenLØ , KlinkeHB , LinnetK. Determination of 19 drugs of abuse and metabolites in whole blood by high-performance liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem.396(7), 2393–2401 (2010).
  • Fernández MdMR , WilleSM , KummerN , DiFazio V , RuyssinckxE , SamynN. Quantitative analysis of 26 opioids, cocaine, and their metabolites in human blood by ultra performance liquid chromatography–tandem mass spectrometry. Ther. Drug Monit.35(4), 510–521 (2013).
  • Boy RG , HenselerJ , MatternR , SkoppG. Determination of morphine and 6-acetylmorphine in blood with use of dried blood spots. Ther. Drug Monit.30(6), 733–739 (2008).
  • Simões SS , AjenjoAC , DiasMJ. Dried blood spots combined to an UPLC–MS/MS method for the simultaneous determination of drugs of abuse in forensic toxicology. J. Pharm. Biomed. Anal.147, 634–644 (2018).
  • Saussereau E , LacroixC , GaulierJ , GoulleJ. On-line liquid chromatography/tandem mass spectrometry simultaneous determination of opiates, cocainics and amphetamines in dried blood spots. J. Chromatogr. B885, 1–7 (2012).
  • Kyriakou C , MarcheiE , ScaravelliG , García-AlgarO , SupervíaA , GrazianoS. Identification and quantification of psychoactive drugs in whole blood using dried blood spot (DBS) by ultra-performance liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal.128, 53–60 (2016).
  • Verplaetse R , HenionJ. Quantitative determination of opioids in whole blood using fully automated dried blood spot desorption coupled to on-line SPE-LC–MS/MS. Drug Test. Anal8(1), 30–38 (2016).
  • Ryona I , HenionJ. A book-type dried plasma spot card for automated flow-through elution coupled with online SPE-LC–MS/MS bioanalysis of opioids and stimulants in blood. Anal. Chem.88(22), 11229–11237 (2016).
  • Sartori D , LewisT , BreaudA , ClarkeW. The development of a high-performance liquid chromatography–tandem mass spectrometric method for simultaneous quantification of morphine, morphine-3-β-glucuronide, morphine-6-β-glucuronide, hydromorphone, and normorphine in serum. Clin. Biochem.48(18), 1283–1290 (2015).
  • Eckart K , RöhrichJ , BreitmeierD , FernerM , Laufenberg-FeldmannR , UrbanR. Development of a new multi-analyte assay for the simultaneous detection of opioids in serum and other body fluids using liquid chromatography–tandem mass spectrometry. J. Chromatogr. B1001, 1–8 (2015).
  • Fountain KJ , YinZ , DiehlDM. Simultaneous analysis of morphine-related compounds in plasma using mixed-mode solid phase extraction and UltraPerformance liquid chromatography–mass spectrometry. J. Sep. Sci.32(13), 2319–2326 (2009).
  • Manfio JL , SantosVJ , LanchoteVLet al. Development and validation of an HPLC–MS/MS method for the determination of sufentanil and morphine in human plasma. J. AOAC Int.94(1), 136–142 (2011).
  • Viaene J , LanckmansK , DejaegherB , MangelingsD , Vander HeydenY. Comparison of a triple-quadrupole and a quadrupole time-of-flight mass analyzer to quantify 16 opioids in human plasma. J. Pharm. Biomed. Anal.127, 49–59 (2016).
  • Sergi M , BafileE , CompagnoneD , CuriniR , D'ascenzoG , RomoloFS. Multiclass analysis of illicit drugs in plasma and oral fluids by LC–MS/MS. Anal. Bioanal. Chem.393(2), 709–718 (2009).
  • Wang I-T , FengY-T , ChenC-Y. Determination of 17 illicit drugs in oral fluid using isotope dilution ultra-high performance liquid chromatography/tandem mass spectrometry with three atmospheric pressure ionizations. J. Chromatogr. B878(30), 3095–3105 (2010).
  • Enders JR , McIntireGL. A dilute-and-shoot LC–MS method for quantitating opioids in oral fluid. J. Anal. Toxicol.39(8), 662–667 (2015).
  • Concheiro M , de CastroA , QuintelaÓ , CruzA , López-RivadullaM. Determination of illicit and medicinal drugs and their metabolites in oral fluid and preserved oral fluid by liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem.391(6), 2329–2338 (2008).
  • Tuyay J , CoulterC , RodriguesW , MooreC. Disposition of opioids in oral fluid: importance of chromatography and mass spectral transitions in LC–MS/MS. Drug Test. Anal4(6), 395–401 (2012).
  • Concheiro M , GrayTR , ShakleyaDM , HuestisMA. High-throughput simultaneous analysis of buprenorphine, methadone, cocaine, opiates, nicotine, and metabolites in oral fluid by liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem.398(2), 915–924 (2010).
  • Di Corcia D , LisiS , PirroV , GeraceE , SalomoneA , VincentiM. Determination of pharmaceutical and illicit drugs in oral fluid by ultra-high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B927, 133–141 (2013).
  • Valen A , LeereØiestad ÅM , StrandDH , SkariR , BergT. Determination of 21 drugs in oral fluid using fully automated supported liquid extraction and UHPLC–MS/MS. Drug Test. Anal9(5), 808–823 (2017).
  • Petrides AK , MelansonSE , KantartjisM , LeRD , DemetriouCA , FloodJG. Monitoring opioid and benzodiazepine use and abuse: is oral fluid or urine the preferred specimen type?Clin. Chim. Acta481, 75–82 (2018).
  • Bucelli F , FratiniA , BavazzanoP , ComodoN. Quantification of drugs of abuse and some stimulants in hair samples by liquid chromatography–electrospray ionization ion trap mass spectrometry. J. Chromatogr. B877(31), 3931–3936 (2009).
  • Domínguez-Romero JC , García-ReyesJF , Molina-DíazA. Screening and quantitation of multiclass drugs of abuse and pharmaceuticals in hair by fast liquid chromatography electrospray time-of-flight mass spectrometry. J. Chromatogr. B879(22), 2034–2042 (2011).
  • Vincenti F , MontesanoC , CellucciLet al. Combination of pressurized liquid extraction with dispersive liquid liquid micro extraction for the determination of sixty drugs of abuse in hair. J. Chromatogr. A1605, 360348 (2019).
  • Nielsen MKK , JohansenSS , LinnetK. Pre-analytical and analytical variation of drug determination in segmented hair using ultra-performance liquid chromatography–tandem mass spectrometry. Forensic Sci. Int.234, 16–21 (2014).
  • Zhu KY , LeungKW , TingAKet al. Microfluidic chip based nano liquid chromatography coupled to tandem mass spectrometry for the determination of abused drugs and metabolites in human hair. Anal. Bioanal. Chem.402(9), 2805–2815 (2012).
  • Hegstad S , KhiabaniH , KristoffersenL , KunøeN , LobmaierP , ChristophersenA. Drug screening of hair by liquid chromatography–tandem mass spectrometry. J. Anal. Toxicol.32(5), 364–372 (2008).
  • Kim J , JiD , KangSet al. Simultaneous determination of 18 abused opioids and metabolites in human hair using LC–MS/MS and illegal opioids abuse proven by hair analysis. J. Pharm. Biomed. Anal.89, 99–105 (2014).
  • Licata M , RustichelliC , PalazzoliFet al. Hair testing in clinical setting: simultaneous determination of 50 psychoactive drugs and metabolites in headache patients by LC tandem MS. J. Pharm. Biomed. Anal.126, 14–25 (2016).
  • Musshoff F , LachenmeierK , TrafkowskiJ , MadeaB , NauckF , StamerU. Determination of opioid analgesics in hair samples using liquid chromatography/tandem mass spectrometry and application to patients under palliative care. Ther. Drug Monit.29(5), 655–661 (2007).
  • Di Corcia D , SalomoneA , GeraceE. Analysis of drugs of abuse in hair samples by ultrahigh-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS). In: Analysis of Drugs of Abuse.Springer107–114 (2018).
  • Huang DK , LiuC , HuangMK , ChienCS. Simultaneous determination of morphine, codeine, 6-acetylmorphine, cocaine and benzoylecgonine in hair by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom.23(7), 957–962 (2009).
  • Cappelle D , DeDoncker M , GysCet al. A straightforward, validated liquid chromatography coupled to tandem mass spectrometry method for the simultaneous detection of nine drugs of abuse and their metabolites in hair and nails. Anal. Chim. Acta960, 101–109 (2017).
  • Shen M , ChenH , XiangP. Determination of opiates in human fingernail—Comparison to hair. J. Chromatogr. B967, 84–89 (2014).
  • Beck O , StephansonN , SandqvistS , FranckJ. Detection of drugs of abuse in exhaled breath from users following recovery from intoxication. J. Anal. Toxicol.36(9), 638–646 (2012).
  • Beck O , StephansonN , SandqvistS , FranckJ. Detection of drugs of abuse in exhaled breath using a device for rapid collection: comparison with plasma, urine and self-reporting in 47 drug users. J. Breath Res.7(2), 026006 (2013).
  • Arvidsson M , UllahS , FranckJ , DahlML , BeckO. Drug abuse screening with exhaled breath and oral fluid in adults with substance use disorder. Drug Test. Anal.11(1), 27–32 (2019).
  • Al-Asmari AI , AndersonRA. Method for quantification of opioids and their metabolites in autopsy blood by liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol.31(7), 394–408 (2007).
  • Gergov M , NokuaP , VuoriE , OjanperäI. Simultaneous screening and quantification of 25 opioid drugs in post-mortem blood and urine by liquid chromatography–tandem mass spectrometry. Forensic Sci. Int.186(1–3), 36–43 (2009).
  • Rosano TG , WoodM , SwiftTA. Postmortem drug screening by non-targeted and targeted ultra-performance liquid chromatography-mass spectrometry technology. J. Anal. Toxicol.35(7), 411–423 (2011).
  • Ruiz-Colon K , MartínezMA , Silva-TorresLAet al. Simultaneous determination of Xylazine, free morphine, codeine, 6-acetylmorphine, cocaine and benzoylecgonine in postmortem blood by UPLC–MS-MS. J. Anal. Toxicol.36(5), 319–326 (2012).
  • Krumbiegel F , HastedtM , WestendorfLet al. The use of nails as an alternative matrix for the long-term detection of previous drug intake: validation of sensitive UHPLC–MS/MS methods for the quantification of 76 substances and comparison of analytical results for drugs in nail and hair samples. Forensic Sci. Med. Pathol.12(4), 416–434 (2016).
  • Klima M , AltenburgerMJ , KempfJ , AuwärterV , NeukammMA. Determination of medicinal and illicit drugs in post mortem dental hard tissues and comparison with analytical results for body fluids and hair samples. Forensic Sci. Int.265, 166–171 (2016).
  • Orfanidis A , GikaH , MastrogianniOet al. Determination of drugs of abuse and pharmaceuticals in skeletal tissue by UHPLC–MS/MS. Forensic Sci. Int.290, 137–145 (2018).
  • Frost J , LøkkenTN , BredeWR , HegstadS , NordrumIS , SlørdalL. A validated method for simultaneous determination of codeine, codeine-6-glucuronide, norcodeine, morphine, morphine-3-glucuronide and morphine-6-glucuronide in post-mortem blood, vitreous fluid, muscle, fat and brain tissue by LC–MS. J. Anal. Toxicol.39(3), 203–212 (2015).
  • Maskell PD , WilsonNE , SeetohulLNet al. Postmortem tissue distribution of morphine and its metabolites in a series of heroin-related deaths. Drug Test. Anal.11(2), 292–304 (2019).
  • Saad MAA , Abu-RummanAM , MohamedKM. A gas chromatography–triple quadrupole mass spectrometry assay for the quantification of opiates in human blood samples. J. Anal. Toxicol.43(3), 188–195 (2019).
  • Sanches LR , SeulinSC , LeytonVet al. Determination of opiates in whole blood and vitreous humor: a study of the matrix effect and an experimental design to optimize conditions for the enzymatic hydrolysis of glucuronides. J. Anal. Toxicol.36(3), 162–170 (2012).
  • Prata M , RibeiroA , FigueirinhaDet al. Determination of opiates in whole blood using microextraction by packed sorbent and gas chromatography-tandem mass spectrometry. J. Chromatogr. A1602, 1–10 (2019).
  • Chericoni S , StefanelliF , IannellaV , GiusianiM. Simultaneous determination of morphine, codeine and 6-acetyl morphine in human urine and blood samples using direct aqueous derivatisation: validation and application to real cases. J. Chromatogr. B949, 127–132 (2014).
  • Matyus M , KocsisG , BoldisOet al. Determination of morphine and codeine in serum after poppy seed consumption using gas chromatography-mass spectrometry. Acta Chromatogr.24(3), 351–365 (2012).
  • Maresova V , ChadtJ , NovakovaE. Screening and semiquantitative analysis of drugs and drugs of abuse in human serum samples using gas chromatography-mass spectrometry. Neuroendocrinol. Lett.29(5), 749 (2008).
  • Langel K , GunnarT , AriniemiK , RajamäkiO , LillsundeP. A validated method for the detection and quantitation of 50 drugs of abuse and medicinal drugs in oral fluid by gas chromatography–mass spectrometry. J. Chromatogr. B879(13–14), 859–870 (2011).
  • Pujadas M , PichiniS , CivitE , SantamariñaE , PerezK , dela Torre R. A simple and reliable procedure for the determination of psychoactive drugs in oral fluid by gas chromatography–mass spectrometry. J. Pharm. Biomed. Anal.44(2), 594–601 (2007).
  • Stoykova S , KanevK , PantchevaI , AtanasovV. Isolation and characterization of drugs of abuse in oral fluid by a novel preconcentration protocol. Anal. Lett.49(17), 2822–2832 (2016).
  • Angeli I , MinoliM , RavelliA , GigliF , LodiF. Automated fast procedure for the simultaneous extraction of hair sample performed with an automated workstation. Forensic Sci. Int.218(1–3), 15–19 (2012).
  • Barroso M , DiasM , VieiraD , López-RivadullaM , QueirozJ. Simultaneous quantitation of morphine, 6-acetylmorphine, codeine, 6-acetylcodeine and tramadol in hair using mixed-mode solid-phase extraction and gas chromatography–mass spectrometry. Anal. Bioanal. Chem.396(8), 3059–3069 (2010).
  • Gouveia CA , OliveiraA , PinhoSet al. Simultaneous quantification of morphine and cocaine in hair samples from drug addicts by GC-EI/MS. Biomed. Chromatogr.26(8), 1041–1047 (2012).
  • Rosado T , BarrosoM , VieiraDN , GallardoE. Determination of selected opiates in hair samples using microextraction by packed sorbent: a new approach for sample clean-up. J. Anal. Toxicol.43(6), 465–476 (2019).
  • Wu YH , LinKL , ChenSC , ChangYZ. Simultaneous quantitative determination of amphetamines, ketamine, opiates and metabolites in human hair by gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom.22(6), 887–897 (2008).
  • Norouzi F , KhoubnasabjafariM , Jouyban-GharamalekiVet al. Determination of morphine and oxymorphone in exhaled breath condensate samples; Application of microwave enhanced three–component deep eutectic solvent based air–assisted liquid–liquid microextraction and derivatization prior to gas chromatography–mass spectrometry. J. Chromatogr. B10.1016/j.jchromb.2020.122256 (2020).
  • Fernandez-Lopez L , Luna-MaldonadoA , FalconM , MastrobattistaL , Navarro-ZaragozaJ , ManciniR. Development and validation of a gas chromatography–mass spectrometry method for opiates and cocaine in human bone. J. Pharm. Biomed. Anal.164, 636–641 (2019).
  • Kovatsi L , RentifisK , GiannakisD , NjauS , SamanidouV. Disposable pipette extraction for gas chromatographic determination of codeine, morphine, and 6-monoacetylmorphine in vitreous humor. J. Sep. Sci.34(14), 1716–1721 (2011).
  • Colucci A , AventaggiatoL , CentroneM , Gagliano-CandelaR. Validation of an extraction and gas chromatography-mass spectrometry quantification method for cocaine, methadone, and morphine in postmortem adipose tissue. J. Anal. Toxicol.34(6), 342–346 (2010).
  • Ottaviani G , CameriereR , CippitelliMet al. Determination of drugs of abuse in a single sample of human teeth by a gas chromatography–mass spectrometry method. J. Anal. Toxicol.41(1), 32–36 (2017).
  • Bevalot F , BottinelliC , CartiserN , FantonL , GuittonJM. Quantification of five compounds with heterogeneous physicochemical properties (morphine, 6-monoacetylmorphine, cyamemazine, meprobamate and caffeine) in 11 fluids and tissues, using automated solid-phase extraction and gas chromatography–tandem mass spectrometry. J. Anal. Toxicol.38(5), 256–264 (2014).
  • Bosch ME , SanchezAR , RojasFS , OjedaCB. Morphine and its metabolites: analytical methodologies for its determination. J. Pharm. Biomed. Anal.43(3), 799–815 (2007).
  • Sparkman OD , PentonZ , KitsonFG. Gas chromatography and mass spectrometry: a practical guide. Academic Press (2011). https://books.google.com/books?hl=en&lr=&id=GDgoogUoOBUC&oi=fnd&pg=PP1&dq=Sparkman+OD,+Penton+Z,+Kitson+FG.+Gas+chromatography+and+mass+spectrometry:+a+practical+guide.+Academic+Press+(2011).&ots=42w87o8b5a&sig=bGKi-rLC4KyeaFIxGmq7A1-odB4#v=onepage&q=Sparkman%20OD%2C%20Penton%20Z%2C%20Kitson%20FG.%20Gas%20chromatography%20and%20mass%20spectrometry%3A%20a%20practical%20guide.%20Academic%20Press%20(2011).&f=false
  • de Hoffmann E . Tandem Mass Spectrometry: Fundamentals and Instrumentation. In: MeyersRA, SparkmanOD (Eds). Encyclopedia Analytical Chemistry: Applications, Theory and Instrumentation (2006). https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470027318.a6017
  • Coles R , KushnirMM , NelsonGJ , McMillinGA , UrryFM. Simultaneous determination of codeine, morphine, hydrocodone, hydromorphone, oxycodone, and 6-acetylmorphine in urine, serum, plasma, whole blood, and meconium by LC–MS-MS. J. Anal. Toxicol.31(1), 1–14 (2007).
  • Concheiro M , LendoiroE , de CastroAet al. Bioanalysis for cocaine, opiates, methadone, and amphetamines exposure detection during pregnancy. Drug Test. Anal.9(6), 898–904 (2017).
  • Guthery B , BassindaleT , BassindaleA , PillingerCT , MorganGH. Qualitative drug analysis of hair extracts by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. J. Chromatogr. A1217(26), 4402–4410 (2010).
  • Rodríguez J , ContentoAM , CastañedaG , MuñozL , BercianoMA. Determination of morphine, codeine, and paclitaxel in human serum and plasma by micellar electrokinetic chromatography. J. Sep. Sci.35(17), 2297–2306 (2012).
  • Emara S , ZaradW , KamalM , AliA , AboulellaY. Sensitivity enhancement for direct injection capillary electrophoresis to determine morphine in human serum via in-capillary derivatization. J. Chromatogr. Sci.57(2), 177–185 (2019).
  • Lin Y-H , LeeM-R , LeeR-J , KoW-K , WuS-M. Hair analysis for methamphetamine, ketamine, morphine and codeine by cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography. J. Chromatogr. A1145(1–2), 234–240 (2007).
  • Meng P , WangY , MengL. pH-mediated stacking in capillary electrophoresis for analysis of opiates in saliva. Anal. Methods4(11), 3695–3700 (2012).
  • Baciu T , BorrullF , AguilarC , CalullM. Findings in the hair of drug abusers using pressurized liquid extraction and solid-phase extraction coupled in-line with capillary electrophoresis. J. Pharm. Biomed. Anal.131, 420–428 (2016).
  • Gottardo R , BortolottiF , DePaoli G , PascaliJP , MikšíkI , TagliaroF. Hair analysis for illicit drugs by using capillary zone electrophoresis-electrospray ionization-ion trap mass spectrometry. J. Chromatogr. A1159(1–2), 185–189 (2007).
  • Asadpour-Zeynali K , AminiR. Nanostructured hexacyanoferrate intercalated Ni/Al layered double hydroxide modified electrode as a sensitive electrochemical sensor for paracetamol determination. Electroanalysis29(2), 635–642 (2017).
  • Li F , SongJ , GaoD , ZhangQ , HanD , NiuL. Simple and rapid voltammetric determination of morphine at electrochemically pretreated glassy carbon electrodes. Talanta79(3), 845–850 (2009).
  • Atta NF , GalalA , Abdel-GawadFM , MohamedEF. Electrochemical morphine sensor based on gold nanoparticles metalphthalocyanine modified carbon paste electrode. Electroanalysis27(2), 415–428 (2015).
  • Dehdashtian S , GholivandMB , ShamsipurM. Construction of a sensitive and selective sensor for morphine using chitosan coated Fe3O4 magnetic nanoparticle as a modifier. Mater. Sci. Eng. C58, 53–59 (2016).
  • Aliabadi A , RounaghiGH. A novel electrochemical sensor for determination of morphine in a sub-microliter of human urine sample. J. Electroanal. Chem.832, 204–208 (2019).
  • Rezaei B , Foroughi-DehnaviS , EnsafiAA. Fabrication of electrochemical sensor based on molecularly imprinted polymer and nanoparticles for determination trace amounts of morphine. Ionics21(10), 2969–2980 (2015).
  • Yang G , ChenY , LiL , YangY. Direct electrochemical determination of morphine on a novel gold nanotube arrays electrode. Clin. Chim. Acta412(17–18), 1544–1549 (2011).
  • Tao M , XuF , LiYet al. Amperometric morphine detection using Pt-Co alloy nanowire array-modified electrode. Bull. Korean Chem. Soc.31(7), 1968–1972 (2010).
  • Maccaferri G , TerziF , XiaZet al. Highly sensitive amperometric sensor for morphine detection based on electrochemically exfoliated graphene oxide. Application in screening tests of urine samples. Sens. Actuators B Chem.281, 739–745 (2019).
  • Niazi A , YazdanipourA. Determination of trace amounts of morphine in human plasma by anodic adsorptive stripping differential pulse voltammetry. Chin. Chem. Lett.19(4), 465–468 (2008).
  • Norouzi P , GanjaliMR , Moosavi-MovahediAA , LarijaniB. Fast Fourier transformation with continuous cyclic voltammetry at an Au microelectrode for the determination of morphine in a flow injection system. Talanta73(1), 54–61 (2007).
  • Talemi RP , MashhadizadehMH. A novel morphine electrochemical biosensor based on intercalative and electrostatic interaction of morphine with double strand DNA immobilized onto a modified Au electrode. Talanta131, 460–466 (2015).
  • Eissa S , ZourobM. Competitive voltammetric morphine immunosensor using a gold nanoparticle decorated graphene electrode. Microchim. Acta184(7), 2281–2289 (2017).
  • Ensafi AA , AbarghouiMM , RezaeiB. Simultaneous determination of morphine and codeine using Pt nanoparticles supported on porous silicon flour modified ionic liquid carbon paste electrode. Sens. Actuators B: Chem219, 1–9 (2015).
  • Bagheri H , KhoshsafarH , AfkhamiA , AmidiS. Sensitive and simple simultaneous determination of morphine and codeine using a Zn 2 SnO 4 nanoparticle/graphene composite modified electrochemical sensor. New J. Chem.40(8), 7102–7112 (2016).
  • Babaei A , AfrasiabiM , ShabanianM. Application of multivariate optimization method in nanomolar simultaneous determination of morphine and codeine in the presence of uric acid using a glassy carbon electrode modified with a hydroxyapatite-Fe 3 O 4 nanoparticle/multiwalled carbon nanotubes composite. J. Iran Chem. Soc.14(11), 2305–2317 (2017).
  • Jahanbakhshi M . In situ synthesis of rhodium nanoparticles-Mesoporous carbon hybrid via a novel and facile nanocasting method for simultaneous determination of morphine and buprenorphine. Mater. Sci. Eng. C97, 479–485 (2019).
  • Niazi A , GhasemiJ , ZendehdelM. Simultaneous voltammetric determination of morphine and noscapine by adsorptive differential pulse stripping method and least-squares support vector machines. Talanta74(2), 247–254 (2007).
  • Gholivand M-B , JalalvandAR , GoicoecheaHC , GargalloR , SkovT , PaimardG. Combination of electrochemistry with chemometrics to introduce an efficient analytical method for simultaneous quantification of five opium alkaloids in complex matrices. Talanta131, 26–37 (2015).
  • Babaei A , BabazadehM , MomeniH. A sensor for simultaneous determination of dopamine and morphine in biological samples using a multi-walled carbon nanotube/chitosan composite modified glassy carbon electrode. Int. J. Electrochem.6, 1382–1395 (2011).
  • Atta NF , GalalA , El-AdsEH , HassanSH. Cobalt oxide nanoparticles/graphene/ionic liquid crystal modified carbon paste electrochemical sensor for ultra-sensitive determination of a narcotic drug. Adv. Pharm. Bull.9(1), 110 (2019).
  • Rajaei M , ForoughiMM , JahaniS , ZandiMS , NadikiHH. Sensitive detection of morphine in the presence of dopamine with La3+ doped fern-like CuO nanoleaves/MWCNTs modified carbon paste electrode. J. Mol. Liq.284, 462–472 (2019).
  • Basiri F , TaeiM. Application of spinel-structured MgFe 2 O 4 nanoparticles for simultaneous electrochemical determination diclofenac and morphine. Microchim. Acta184(1), 155–162 (2017).
  • Akbarian Y , Shabani-NooshabadiM , Karimi-MalehH. Fabrication of a new electrocatalytic sensor for determination of diclofenac, morphine and mefenamic acid using synergic effect of NiO-SWCNT and 2, 4-dimethyl-N/-[1-(2, 3-dihydroxy phenyl) methylidene] aniline. Sens. Actuators B Chem.273, 228–233 (2018).
  • Babaei A , BabazadehM. Multi-walled carbon nanotubes/chitosan polymer composite modified glassy carbon electrode for sensitive simultaneous determination of levodopa and morphine. Anal. Methods3(10), 2400–2405 (2011).
  • Nigović B , SadikovićM , SertićM. Multi-walled carbon nanotubes/Nafion composite film modified electrode as a sensor for simultaneous determination of ondansetron and morphine. Talanta122, 187–194 (2014).
  • Sheibani A , ShishehboreMR , MirpariziE. Kinetic spectrophotometric method for the determination of morphine in biological samples. Spectrochim. Acta A77(2), 535–538 (2010).
  • Mohseni N , BahramM. Mean centering of ratio spectra for colorimetric determination of morphine and codeine in pharmaceuticals and biological samples using melamine modified gold nanoparticles. Anal. Methods8(37), 6739–6747 (2016).
  • Bahram M , MadrakianT , AlizadehS. Simultaneous colorimetric determination of morphine and ibuprofen based on the aggregation of gold nanoparticles using partial least square. J. Pharm. Biomed. Anal.7(6), 411–416 (2017).
  • El-Didamony AM , AliII. Spectrofluorimetric and spectrophotometric analysis of two analgesic drugs in pharmaceutical formulations and biological fluids. J. Forensic Sci.58(5), 1322–1329 (2013).
  • Pourahadi A , FarahaniA , HosseinyDavarani SS , NojavanS , TashakoriC. Developing a miniaturized setup for in-tube simultaneous determination of three alkaloids using electromembrane extraction in combination with ultraviolet spectrophotometry. J. Sep. Sci.42(19), 3126–3133 (2019).
  • Agius R , NadulskiT. Utility of ELISA screening for the monitoring of abstinence from illegal and legal drugs in hair and urine. Drug Test. Anal.6(S1), 101–109 (2014).
  • Musshoff F , KirschbaumK , GraumannK , HerzfeldC , SachsH , MadeaB. Evaluation of two immunoassay procedures for drug testing in hair samples. Forensic Sci. Int.215(1–3), 60–63 (2012).
  • Arroyo A , SánchezM , PalahíM , BarbalM , MarrónMT , MoraA. Applicability of an on-site test for its use in post-mortem blood. Leg. Med.13(5), 240–244 (2011).
  • Xu B , YeY , LiaoL. Detection of methamphetamine and morphine in urine and saliva using excitation–emission matrix fluorescence and a second-order calibration algorithm. J. Appl. Spectrosc.83(3), 383–391 (2016).
  • Nebu J , DeviJA , AparnaR , AswathyB , AswathyA , SonyG. Fluorometric determination of morphine via its effect on the quenching of fluorescein by gold nanoparticles through a surface energy transfer process. Microchim. Acta185(12), 532 (2018).
  • Cao J , ChenX-Y , ZhaoW-R. Determination of morphine in human urine by the novel competitive fluorescence immunoassay. J. Anal. Methods Chem. Article ID 7826090 (2019).
  • Christodoulides N , De La GarzaRII , SimmonsGWet al. Application of programmable bio-nano-chip system for the quantitative detection of drugs of abuse in oral fluids. Drug Alcohol Depend.153, 306–313 (2015).
  • Espy RD , TeunissenSF , ManickeNEet al. Paper spray and extraction spray mass spectrometry for the direct and simultaneous quantification of eight drugs of abuse in whole blood. Anal. Chem.86(15), 7712–7718 (2014).
  • Manicke NE , BelfordM. Separation of opiate isomers using electrospray ionization and paper spray coupled to high-field asymmetric waveform ion mobility spectrometry. J. Am. Soc. Mass. Spectrom.26(5), 701–705 (2015).
  • Ollikainen E , Aitta-ahoT , KoburgM , KostiainenR , SikanenT. Rapid analysis of intraperitoneally administered morphine in mouse plasma and brain by microchip electrophoresis-electrochemical detection. Sci. Rep.9(1), 1–9 (2019).
  • Taranova NA , ByzovaNA , ZaikoVVet al. Integration of lateral flow and microarray technologies for multiplex immunoassay: application to the determination of drugs of abuse. Microchim. Acta180(11–12), 1165–1172 (2013).
  • Míguez-Framil M , Moreda-PiñeiroA , Bermejo-BarreraP , CochoJÁ , TaberneroMJ , BermejoAM. Electrospray ionization tandem mass spectrometry for the simultaneous determination of opiates and cocaine in human hair. Anal. Chim. Acta704(1–2), 123–132 (2011).
  • Antelo-Domínguez Á , CochoJÁ , TaberneroMJ , BermejoAM , Bermejo-BarreraP , Moreda-PiñeiroA. Simultaneous determination of cocaine and opiates in dried blood spots by electrospray ionization tandem mass spectrometry. Talanta117, 235–241 (2013).
  • Guteneva NV , ZnoykoSL , OrlovAV , NikitinMP , NikitinPI. Rapid lateral flow assays based on the quantification of magnetic nanoparticle labels for multiplexed immunodetection of small molecules: application to the determination of drugs of abuse. Microchim. Acta186(9), 621 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.