278
Views
4
CrossRef citations to date
0
Altmetric
Review

Bioanalytical Solutions to Acetonitrile Shortages

, , &
Pages 1627-1640 | Published online: 20 Aug 2010

Bibliography

  • Welch CJ , BrkovicT, SchaferW, GongX. Performance to burn? Re-evaluating the choice of acetonitrile as the platform solvent for analytical HPLC. Green Chem. 11(8), 1232–1238 (2009).
  • Savoie N , GarofoloF, van Amsterdam Pet al. 2009 white paper on recent issues in regulated bioanalysis from The 3rd Calibration and Validation Group Workshop. Bioanalysis2(1), 53–68 (2010).
  • Xu RN , FanL, RieserMJ, El-ShourbagyTA. Recent advances in high-throughput quantitative bioanalysis by LC–MS/MS. J. Pharm. Biomed. Anal. 44(2), 342–355 (2007).
  • Polson C , SarkarP, IncledonB, RaguvaranV, GrantR. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 785(2), 263–275 (2003).
  • Kazakevich Y , LoBruttoR. Reversed-phase HPLC. In:HPLC for Pharmaceutical Scientists. Kazakevich Y, Lobrutto R (Eds). John Wiley & Sons, Hoboken, NJ, USA 139–239 (2007).
  • Xu X . HPLC method development for drug discovery LC–MS assays in rapid pharmacokinetics applications. In: HPLC Method Development for Pharmaceuticals. Ahujia S, Rasmussen H (Eds). Elsevier, 317–351 (2007).
  • Chambers E , Wagrowski-DiehlDM, LuZ, MazzeoJR. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 852(1–2), 22–34 (2007).
  • Korfmacher WA . Bioanalytical assays in a drug discovery environment. In:Using Mass Spectrometry for Drug Metabolism Studies, Korfmacher W (Eds). CRC Press, Boca Raton, FL, USA 1–26 (2005).
  • Zhou S , SongQ, TangY, NaidongW. Critical review of development, validation, and transfer for high throughput bioanalytical LC–MS/MS methods. Curr. Pharm. Anal. 1(1), 3–14 (2005).
  • Yin H , TranP, GreenbergGE, FischerV. Methanol solvent may cause increased apparent metabolic instability in in vitro assays. Drug Metab. Dispos. 29(2), 185–193 (2001).
  • Thompson JW , KaiserTJ, JorgensonJW. Viscosity measurements of methanol–water and acetonitrile–water mixtures at pressures up to 3500 bar using a novel capillary time-of-flight viscometer. J. Chromatogr. A1134(1–2), 201–209 (2006).
  • Marney LC , LahaTJ, BairdGS, RaineyPM, HoofnagleAN. Isopropanol protein precipitation for the analysis of plasma free metanephrines by liquid chromatography–tandem mass spectrometry. Clin. Chem. 54(10), 1729–1732 (2008).
  • Shihabi ZK . Analyte recovery from deproteinized serum for HPLC. J. Liq. Chromatogr. Relat. Technol. 31, 3159–3168 (2008).
  • Gao H , WilliamsJ, HuangHet al. Solutions of dealing with global acetonitrile shortage in discovery HTP bioanalytical laboratory. Presented at:238th ACS National Meeting. Washington, DC, USA 16–20 August 2009.
  • Gao H , JiangL, ZhangJ, BrummelC. Mimizing matrix effects on bioanalysis of drug entities to support drug discovery #038. Presented at:54th ASMS Conference on Mass Spectrometry. Seattle WA, USA 28 June – 3 July 2006.
  • Kocan G , QuangC, TangD: Evaluation of protein precipitation filter plates for high-throughput LC–MS/MS bioanalytical sample preparation. American Drug Discovery1(3), 21–24 (2006).
  • Little JL , WempeMF, BuchananCM. Liquid chromatography–mass spectrometry/mass spectrometry method development for drug metabolism studies: examining lipid matrix ionization effects in plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 833(2), 219–230 (2006).
  • Loeser E , BabiakS, DrummP. Water-immiscible solvents as diluents in reversed-phase liquid chromatography. J. Chromatogr. A1216(15), 3409–3412 (2009).
  • Chang MS , KimEJ, El-ShourbagyTA. Evaluation of 384-well formatted sample preparation technologies for regulated bioanalysis. Rapid Commun. Mass Spectrom. 21(1), 64–72 (2007).
  • Naidong W , ZhouW, SongQ, ZhouS. Direct injection of 96-well organic extracts onto a hydrophilic interaction chromatography/tandem mass spectrometry system using a silica stationary phase and an aqueous/organic mobile phase. Rapid Commun. Mass Spectrom. 18(23), 2963–2968 (2004).
  • Young MS . Oasis HLB SPE disk for rapid multiresidue determination of pharmaceuticals in drinking water. LCGC North Am. (Suppl.), 29 (2009).
  • Alnouti Y , SrinivasanK, WaddellD, BiH, KavetskaiaO, GusevAI. Development and application of a new on-line SPE system combined with LC–MS/MS detection for high throughput direct analysis of pharmaceutical compounds in plasma. J. Chromatogr. A1080(2), 99–106 (2005).
  • Cassiano NM , BarreiroJC, MoraesMC, OliveiraRV, CassQB. Restricted access media supports for direct high-throughput analysis of biological fluid samples: review of recent applications. Bioanalysis1(3), 577–594 (2009).
  • Espourteille FA . Quantitation of fentanyl and norfentanyl from urine using an on-line high throughput system. LC-GC Eur. 26, 9 (2008).
  • Sadagopan N , PabstB, CohenL. Evaluation of online extraction/mass spectrometry for in vivo cassette analysis. J. Chromatogr. B. Anal. Technol. Biomed. Life Sci. 820(1), 59–67 (2005).
  • Guillarme D , SchapplerJ, HenchozY, RudazS. Veuthey J-L. Practical solutions for overcoming the acetonitrile shortage in analytical procedures. Presented at:HPLC 2009. Dresden, Germany 28 June – 2 July 2009.
  • Annesley TM . Methanol-associated matrix effects in electrospray ionization tandem mass spectrometry. Clin. Chem. 53(10), 1827–1834 (2007).
  • Neue UD , O’GaraJE, MendezA. Selectivity in reversed-phase separations. Influence of the stationary phase. J. Chromatogr. A1127(1–2), 161–174 (2006).
  • Drexler DM , EdingerKJ, MongilloJJ. Improvements to the sample manipulation design of a LEAP CTC HTS PAL autosampler used for high-throughput qualitative and quantitative liquid chromatography–mass spectrometry assays. JALA12(3), 152–156 (2007).
  • van Deemter JJ , ZuiderwegFJ, KlinkenbergA. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromato-graphy. Chem. Eng. Sci. 5, 271–289 (1956).
  • Novakova L , VlckovaH. A review ofcurrent trends and advances in modern bio-analytical methods: chromatography and sample preparation. Anal. Chim. Acta656(1–2), 8–35 (2009).
  • Salisbury JJ . Fused-core particles: a practical alternative to sub-2 micron particles. J. Chromatogr. Sci. 46(10), 883–886 (2008).
  • Abrahim A , Al-SayahM, SkrdlaP, BereznitskiY, ChenY, WuN. Practical comparison of 2.7 microm fused-core silica particles and porous sub-2 microm particles for fast separations in pharmaceutical process development. J. Pharm. Biomed. Anal. 51(1), 131–137 (2010).
  • Cunliffe JM , NorenCF, HayesRN, ClementRP, ShenJX. A high-throughput LC–MS/MS method for the quantitation of posaconazole in human plasma: implementing fused core silica liquid chromatography. J. Pharm. Biomed. Anal. 50(1), 46–52 (2009).
  • Gere DR , BoardR, McManigillD. Supercritical fluid chromatography with small particle diameter packed columns. Anal. Chem. 54(4), 736–740 (1982).
  • Klesper E , CorwinAH, TurnerDA. Porphyrin studies. XX. High pressure gas chromatography above critical temperatures. J. Org. Chem. 27, 700–701 (1962).
  • West C , LesellierE. A unifiedclassification of stationary phases for packed column supercritical fluid chromatography. J. Chromatogr. A1191(1–2), 21–39 (2008).
  • Coe RA , RatheJO, LeeJW. Supercritical fluid chromatography-tandem mass spectrometry for fast bioanalysis of R/S-warfarin in human plasma. J. Pharm. Biomed. Anal. 42(5), 573–580 (2006).
  • White C . Integration of supercritical fluid chromatography into drug discovery as a routine support tool. Part I. fast chiral screening and purification. J. Chromatogr. A1074(1–2), 163–173 (2005).
  • Hoke SH II , TomlinsonJAII, BoldenRD, MorandKL, PinkstonJD, WehmeyerKR. Increasing bioanalytical throughput using pcSFC-MS/MS: 10 minutes per 96-well plate. Anal. Chem. 73(13), 3083–3088 (2001).
  • Rios A , ZougaghM, de Andres F. Bioanalytical applications using supercritical fluid techniques. Bioanalysis2(1), 9–25 (2010).
  • White C , BurnettJ. Integration of supercritical fluid chromatography into drug discovery as a routine support tool. II. Investigation and evaluation of supercritical fluid chromatography for achiral batch purification. J. Chromatogr. A1074(1–2), 175–185 (2005).
  • Da Silva JO , YipHS, HegdeV. Supercritical fluid chromatography (SFC) as a green chromatographic technique to support rapid development of pharmaceutical candidates. Am. Pharm. Rev. 12(1), 98–104 (2009).
  • Venter A , SojkaPE, CooksRG. Droplet dynamics and ionization mechanisms in desorption electrospray ionization mass spectrometry. Anal. Chem. 78(24), 8549–8555 (2006).
  • Cody RB , LarameeJA, DurstHD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77(8), 2297–2302 (2005).
  • Kennedy JH , WisemanJM. Evaluation and performance of desorption electrospray ionization using a triple quadrupole mass spectrometer for quantitation of pharmaceuticals in plasma. Rapid Commun. Mass Spectrom. 24(3), 309–314 (2010).
  • Miao Z , ChenH. Direct analysis of liquid samples by desorption electrospray ionization-mass spectrometry (DESI–MS). J. Am. Soc. Mass Spectrom. 20(1), 10–19 (2009).
  • Yu S , CrawfordE, TiceJ, MusselmanB, Wu J-T. Bioanalysis without sample cleanup or chromatography: the evaluation and initial implementation of direct analysis in real time ionization mass spectrometry for the quantification of drugs in biological matrixes. Anal. Chem. 81(1), 193–202 (2009).
  • Zhao Y , LamM, WuD, MakR. Quantification of small molecules in plasma with direct analysis in real time tandem mass spectrometry, without sample preparation and liquid chromatographic separation. Rapid Commun. Mass Spectrom. 22(20), 3217–3224 (2008).
  • Wu C , IfaDR, ManickeNE, CooksRG. Molecular imaging of adrenal gland by desorption electrospray ionization mass spectrometry. Analyst135(1), 28–32 (2010).
  • Talaty N , MulliganCC, JustesDR, JacksonAU, NollRJ, CooksRG. Fabric analysis by ambient mass spectrometry for explosives and drugs. Analyst133(11), 1532–1540 (2008).
  • Soparawalla S , SalazarGA, PerryRH, NicholasM, CooksRG. Pharmaceutical cleaning validation using non-proximate large-area desorption electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 23(1), 131–137 (2009).
  • Garcia-Reyes J , JacksonA, Molina-DiazA, CooksGR: Desorption electrospray ionization mass spectrometry for trace analysis of agrochemicals in food. Anal. Chem. 81(2), 820–829 (2009).
  • Helmy R , SchaferW, BuhlerLet al. Ambient pressure desorption ionization mass spectrometry in support of preclinical pharmaceutical development. Org. Process Res. Dev. 14(2), 386–392 (2010).
  • Ma X , ZhaoM, LinZ, ZhangS, YangC, ZhangX. Versatile platform employing desorption electrospray ionization mass spectrometry for high-throughput analysis. Anal. Chem. 80(15), 6131–6136 (2008).
  • Manicke NE , KistlerT, IfaDR, CooksRG, OuyangZ. High-throughput quantitative analysis by desorption electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 20(2), 321–325 (2009).
  • Petucci C , DiffendalJ, KaufmanD, MekonnenB, TerefenkoG, MusselmanB. Direct analysis in real time for reaction monitoring in drug discovery. Anal. Chem. 79(13), 5064–5070 (2007).
  • Wu C , IfaDR, ManickeNE, CooksRG. Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray ionization. Anal. Chem. 81(18), 7618–7624 (2009).
  • Nosko S , BurgerD. Recycling of solvent mixtures. Acetonitrile wastes. LaborPraxis17(2), 51–55 (1993).
  • Stepnowski P . Recovery of acetonitrile from chromatographic waste. Oils Environ. Proc. Int. Conf. 4th506–509 (2005).
  • Wiseman JM , EvansCA, BowenCL, KennedyJH. Direct analysis of dried blood spots utilizing desorption electrospray ionization (DESI) mass spectrometry. Analyst135(4), 720–725 (2010).

Patents

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.