531
Views
1
CrossRef citations to date
0
Altmetric
Review

Production of Human Phase 1 and 2 Metabolites by Whole-Cell Biotransformation with Recombinant Microbes

, , , , &
Pages 1277-1290 | Published online: 13 Jul 2010

Bibliography

  • Thompson TN . Safety testing of drug metabolites. In:Annual Reports in Medicinal Chemistry. Macor JE (Ed.). Academic Press, London, UK (2009).
  • Davis-Bruno KL , AtrakchiA. A regulatory perspective on issues and approaches in characterizing human metabolites. Chem. Res. Toxicol. 19(12), 1561–1563 (2006).
  • US FDA. Guidance for industry: safety testing of drug metabolites. (2008).
  • Bernhardt R . Cytochrome P450: structure, function, and generation of reactive oxygen species. Rev. Physiol. Biochem. Pharmacol. 127, 137–221 (1996).
  • Bernhardt R . Cytochromes P450 as versatile biocatalysts. J. Biotechnol. 124(1), 128–145. (2006).
  • Guengerich FP . Cytochrome P450: what have we learned and what are the future issues? Drug Metab. Rev. 36(2), 159–197 (2004).
  • Hannemann F , BichetA, EwenKM, BernhardtR. Cytochrome P450 systems-biological variations of electron transport chains. Biochim. Biophys. Acta1770(3), 330–344 (2006).
  • Nebert DW , DaltonTP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat. Rev. Cancer6(12), 947–960 (2006).
  • Omura T , SatoR. A new cytochrome in liver microsomes. J. Biol. Chem. 237, 1375–1376 (1962).
  • Stark K , GuengerichFP. Characterization of orphan human cytochromes P450. Drug Metab. Rev. 39(2–3), 627–637 (2007).
  • Julsing MK , CornelissenS, BuhlerB, SchmidA. Heme-iron oxygenases: powerful industrial biocatalysts? Curr. Opin. Chem. Biol. 12(2), 177–186 (2008).
  • Yamazaki H , NakajimaM, NakamuraMet al. Enhancement of cytochrome P450 3A4 catalytic activities by cytochrome b5 in bacterial membranes. Drug Metab. Dispos. 27(9), 999–1004 (1999).
  • Vail RB , HomannMJ, HannaI, ZaksA. Preparative synthesis of drug metabolites using human cytochrome P450s 3A4, 2C9 and 1A2 with nadph-P450 reductase expressed in Escherichia coli. J. Ind. Microbiol. Biotechnol. 32(2), 67–74 (2005).
  • Kolar NW , SwartAC, MasonJI, SwartP. Functional expression and characterisation of human cytochrome P45017 α in pichia pastoris. J. Biotechnol. 129(4), 635–644 (2007).
  • Soars MG , McginnityDF, GrimeK, RileyRJ. The pivotal role of hepatocytes in drug discovery. Chem. Biol. Interact. 168(1), 2–15 (2007).
  • Gonzalez FJ , CrespiCL, GelboinHV. DNA-expressed human cytochrome P450s: a new age of molecular toxicology and human risk assessment. Mutat. Res. 247(1), 113–127 (1991).
  • Buters JT , KorzekwaKR, KunzeKL, OmataY, HardwickJP, GonzalezFJ. CDNA-directed expression of human cytochrome P450 CYP3A4 using baculovirus. Drug Metab. Dispos. 22(5), 688–692 (1994).
  • Peters FT , BureikM, MaurerHH. Biotechnological synthesis of drug metabolites using human cytochrome P450 isozymes heterologously expressed in fission yeast. Bioanalysis1(4), 821–830 (2009).
  • Shaw PM , HoseaNA, ThompsonDV, LeniusJM, GuengerichFP. Reconstitution premixes for assays using purified recombinant human cytochrome P450, NADPH-cytochrome P450 reductase, and cytochrome b5. Arch. Biochem. Biophys. 348(1), 107–115 (1997).
  • Guengerich FP . Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 14(6), 611–650 (2001).
  • Kim DH , KimKH, IsinEMet al. Heterologous expression and characterization of wild-type human cytochrome P450 1a2 without conventional N-terminal modification in Escherichia coli. Protein Expr. Purif. 57(2), 188–200 (2008).
  • Zmijewski M , GillespieTA, JacksonDA, SchmidtDF, YiP, KulanthaivelP. Application of biocatalysis to drug metabolism: preparation of mammalian metabolites of a biaryl-bis-sulfonamide ampa (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor potentiator using actinoplanes missouriensis. Drug Metab. Dispos. 34(6), 925–931 (2006).
  • Yun CH , YimSK, KimDH, AhnT. Functional expression of human cytochrome P450 enzymes in escherichia coli. Curr. Drug Metab. 7(4), 411–429 (2006).
  • Van Beilen JB , HoltackersR, LuscherD, BauerU, WitholtB, DuetzWA. Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp cytochrome P450 alkane hydroxylase expressed in pseudomonas putida. Appl. Environ. Microbiol. 71(4), 1737–1744 (2005).
  • Fujita K , KamatakiT. Role of human cytochrome P450 (CYP) in the metabolic activation of N-alkylnitrosamines: application of genetically engineered salmonella typhimurium yg7108 expressing each form of CYP together with human nadph-cytochrome P450 reductase. Mutat. Res. Fund. Mol. Mech. Mut. 483(1–2), 35–41 (2001).
  • Rushmore TH , ReiderPJ, SlaughterD, AssangC, ShouM. Bioreactor systems in drug metabolism: synthesis of cytochrome P450-generated metabolites. Metab. Eng. 2(2), 115–125 (2000).
  • Harnastai IN , GilepAA, UsanovSA. The development of an efficient system for heterologous expression of cytochrome P450s in Escherichia coli using heme gene coexpression. Protein Expr. Purif. 46(1), 47–55 (2006).
  • Uchida E , KagawaN, SakakiTet al. Purification and characterization of mouse CYP27B1 overproduced by an escherichia coli system coexpressing molecular chaperonins groel/es. Biochem. Biophys. Res. Commun. 323(2), 505–511 (2004).
  • Zollner A , KagawaN, WatermanMRet al. Purification and functional characterization of human 11β hydroxylase expressed in Escherichia coli. FEBS J. 275(4), 799–810 (2008).
  • Narhi LO , FulcoAJ. Identification and characterization of two functional domains in cytochrome P450BM-3, a catalytically self-sufficient monooxygenase induced by barbiturates in bacillus megaterium. J. Biol. Chem. 262(14), 6683–6690 (1987).
  • Noble MA , MilesCS, ChapmanSKet al. Roles of key active-site residues in flavocytochrome P450 BM3. Biochem. J. 339, 371–379 (1999).
  • Otey CR , BandaraG, LalondeJ, TakahashiK, ArnoldFH. Preparation of human metabolites of propranolol using laboratory-evolved bacterial cytochromes P450. Biotechnol. Bioeng. 93(3), 494–499 (2006).
  • Schwaneberg U , OteyC, CirinoPC, FarinasE, ArnoldFH. Cost-effective whole-cell assay for laboratory evolution of hydroxylases in Escherichia coli. J. Biomol. Screen6(2), 111–117 (2001).
  • Hamann T , MollerBL. Improved cloning and expression of cytochrome P450s and cytochrome P450 reductase in yeast. Protein Expr. Purif. 56(1), 121–127 (2007).
  • Bureik M , SchifflerB, HiraokaY, VogelF, BernhardtR. Functional expression of human mitochondrial CYP11B2 in fission yeast and identification of a new internal electron transfer protein, etp1. Biochemistry41(7), 2311–2321 (2002).
  • Peyronneau MA , RenaudJP, TruanG, UrbanP, PomponD, MansuyD. Optimization of yeast-expressed human liver cytochrome P450 3A4 catalytic activities by coexpressing nadph-cytochrome P450 reductase and cytochrome b5. Eur. J. Biochem. 207(1), 109–116 (1992).
  • Goffeau A , BarrellBG, BusseyHet al. Life with 6000 genes. Science274(5287), 546, 563–7 (1996).
  • De Schutter K , LinYC, TielsPet al. Genome sequence of the recombinant protein production host pichia pastoris. Nat. Biotechnol. 27(6), 561–566 (2009).
  • Alfa C , FantesP, HyamsJ, McleodM, WarbrickE. Experiments with fission yeast. A laboratory course manual. Cold Spring Harbor Press, Cold Spring Harbor, NY, USA (1993).
  • Sambrook J , RusellDW. Molecular cloning: A laboratory manual. CSHL Press, Woodbury, NY, USA (2001).
  • Cereghino JL , CreggJM. Heterologous protein expression in the methylotrophic yeast pichia pastoris. FEMS Microbiol Rev. 24(1), 45–66 (2000).
  • Cereghino GPL , CereghinoJL, IlgenC, CreggJM. Production of recombinant proteins in fermenter cultures of the yeast pichia pastoris. Curr. Opin. Biotechnol. 13(4), 329–332 (2002).
  • Peters FT , DraganCA, WildeDRet al. Biotechnological synthesis of drug metabolites using human cytochrome P450 2D6 heterologously expressed in fission yeast exemplified for the designer drug metabolite 4´-hydroxymethyl- α-pyrrolidinobutyrophenone. Biochem. Pharmacol. 74(3), 511–520 (2007).
  • Peters FT , DraganCA, SchwaningerAEet al. Use of fission yeast heterologously expressing human cytochrome P450 2B6 in biotechnological synthesis of the designer drug metabolite N-(1-phenylcyclohexyl)-2-hydroxyethanamine. Forensic Sci. Int. 184, 69–73 (2009).
  • Dumas B , PomponD, ChandelierFet al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Yeast20, S220–S220 (2003).
  • Szczebara FM , ChandelierC, VilleretCet al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat. Biotechnol. 21(2), 143–149 (2003).
  • Dragan CA , BlankLM, BureikM. Increased tca cycle activity and reduced oxygen consumption during cytochrome P450-dependent biotransformation in fission yeast. Yeast23(11), 779–794 (2006).
  • Dragan CA , HartmannRW, BureikM. A fission yeast based test system for the determination of ic50 values of antiprostate tumor drugs acting on CYP21. J. Enzyme Inhib. Med. Chem. 21(5), 547–556 (2006).
  • Dragan CA , ZearoS, HannemannF, BernhardtR, BureikM. Efficient conversion of 11-deoxycortisol to cortisol (hydrocortisone) by recombinant fission yeast schizosaccharomyces pombe. FEMS Yeast Res. 5, 621–625 (2005).
  • Peters FT , DraganCA, KauffelsAet al. Biotechnological synthesis of the designer drug metabolite 4‘-hydroxymethyl-α-pyrrolidinohexanophenone in fission yeast heterologously expressing human cytochrome P450 2D6-A versatile alternative to multistep chemical synthesis. J. Anal. Toxicol. 33(4), 190–197 (2009).
  • Zöllner A , DraganCA, PistoriusDet al. Human CYP4Z1 catalyzes the in-chain hydroxylation of lauric acid and myristic acid. Biol. Chem. 390, 313–317 (2009).
  • Zollner A , ParrMK, DraganCAet al. CYP21-catalyzed production of the long-term urinary metandienone metabolite 17β-hydroxymethyl-17α-methyl-18-norandrosta-1,4,13-trien-3-one: a contribution to the fight against doping. Biol. Chem. 391(1), 119–127 (2010).
  • Peters FT , SchwaningerAE, DraganCA, BureikM, MaurerHH. New fission yeast strains expressing human cytochrome P450 enzymes to be used for biotechnological synthesis of drug metabolites. Ther. Drug. Monit. 29(4), 466–467 (2007).
  • Peters FT , SchwaningerAE, SauerCet al. Isolation and purification of the designer drug metabolite O-desethyl-N-(1-phenylcyclohexyl)-3-ethoxypropanamine (O-desethyl-pcepa) biotechnologically synthesized using fission yeast expressing CYP2D6. Presente at:XV. GTFCh–Symposium. Mosbach, Germany, 18–21 April 2007.
  • Iwata H , FujitaK, KushidaHet al. High catalytic activity of human cytochrome P450 coexpressed with human NADPH-cytochrome P450 reductase in Escherichia coli. Biochem. Pharmacol. 55(8), 1315–1325 (1998).
  • Blake JAR , PritchardM, DingSHet al. Coexpression of a human P450 (CYP3A4) and P450 reductase generates a highly functional monooxygenase system in Escherichia coli. FEBS Lett. 397(2–3), 210–214 (1996).
  • Chang MCY , EachusRA, TrieuW, RoDK, KeaslingJD. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat. Chem. Biol. 3(5), 274–277 (2007).
  • Hummel W . New alcohol dehydrogenases for the synthesis of chiral compounds. Adv. Biochem. Eng. Biotechnol. 58, 145–184 (1997).
  • Bronley-Delancey A , McmillanDC, McmillanJM, JollowDJ, MohrLC, HoelDG. Application of cryopreserved human hepatocytes in trichloroethylene risk assessment: relative disposition of chloral hydrate to trichloroacetate and trichloroethanol. Environ. Health Perspect. 114(8), 1237–1242 (2006).
  • Griffin DR , GainerJL, CartaG. Asymmetric ketone reduction with immobilized yeast in hexane: biocatalyst deactivation and regeneration. Biotechnol. Prog. 17(2), 304–310 (2001).
  • Yu MA , WeiYM, ZhaoL, JiangL, ZhuXB, QiW. Bioconversion of ethyl 4-chloro-3-oxobutanoate by permeabilized fresh brewer’s yeast cells in the presence of allyl bromide. J. Ind. Microbiol. Biotechnol. 34(2), 151–156 (2007).
  • Katzberg M , WechlerK, MullerMet al. Biocatalytical production of (5s)-hydroxy-2-hexanone. Org. Biomol. Chem. 7(2), 304–314 (2009).
  • Stampfer W , KosjekB, FaberK, KroutilW. Biocatalytic asymmetric hydrogen transfer employing Rhodococcus ruber DSM 44541. J. Org. Chem. 68(2), 402–406 (2003).
  • Stampfer W , KosjekB, KroutilW, FaberK. On the organic solvent and thermostability of the biocatalytic redox system of rhodococcus ruber DSM 44541. Biotechnol. Bioeng. 81(7), 865–869 (2003).
  • Yamamoto H , MatsuyamaA, KobayashiY. Synthesis of ethyl (r)-4-chloro-3-hydroxybutanoate with recombinant escherichia coli cells expressing (s)-specific secondary alcohol dehydrogenase. Biosci. Biotechnol. Biochem. 66(2), 481–483 (2002).
  • Yamamoto H , MatsuyamaA, KobayashiY. Synthesis of (r)-1,3-butanediol by enantioselective oxidation using whole recombinant Escherichia coli cells expressing (s)-specific secondary alcohol dehydrogenase. Biosci. Biotechnol. Biochem. 66(4), 925–927 (2002).
  • Ernst M , KaupB, MullerM, Bringer-MeyerS, SahmH. Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (r)-specific alcohol dehydrogenase. Appl. Microbiol. Biotechnol. 66(6), 629–634 (2005).
  • Weckbecker A , HummelW. Improved synthesis of chiral alcohols with Escherichia coli cells coexpressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase. Biotechnol. Lett. 26(22), 1739–1744 (2004).
  • Goldberg K , EdeggerK, KroutilW, LieseA. Overcoming the thermodynamic limitation in asymmetric hydrogen transfer reactions catalyzed by whole cells. Biotechnol. Bioeng. 95(1), 192–198 (2006).
  • Schroer K , Peter Luef K, Stefan Hartner F, Glieder A, Pscheidt B. Engineering the pichia pastoris methanol oxidation pathway for improved NADH regeneration during whole-cell biotransformation. Metab. Eng. 12(1), 8–17 (2009).
  • Long A , WardOP. Biotransformation of benzaldehyde by Saccharomyces cerevisiae: characterization of the fermentation and toxicity effects of substrates and products. Biotechnol. Bioeng. 34(7), 933–941 (1989).
  • Zocher F , EnzelbergerMM, BornscheuerUT, HauerB, WohllebenW, SchmidRD: Epoxide hydrolase activity of streptomyces strains. J. Biotechnol. 77(2–3), 287–292 (2000).
  • Li C , LiuQ, SongX, DiD, JiA, QuY. Epoxide hydrolase-catalyzed resolution of ethyl 3-phenylglycidate using whole cells of Pseudomonas sp. Biotechnol. Lett. 25(24), 2113–2116 (2003).
  • Xu Y , XuJH, PanJ, TangYF. Biocatalytic resolution of glycidyl aryl ethers by trichosporon loubierii: cell/substrate ratio influences the optical purity of (r)-epoxides. Biotechnol. Lett. 26(15), 1217–1221 (2004).
  • Kotik M , BrichacJ, KyslikP. Novel microbial epoxide hydrolases for biohydrolysis of glycidyl derivatives. J. Biotechnol. 120(4), 364–375 (2005).
  • Liu Y , ShaQ, WuS, WangJ, YangL, SunW. Enzymatic resolution of racemic phenyloxirane by a novel epoxide hydrolase from aspergillus niger SQ-6 and its fed-batch fermentation. J. Ind Microbiol. Biotechnol. 33(4), 274–282 (2006).
  • Labuschagne M , AlbertynJ. Cloning of an epoxide hydrolase-encoding gene from rhodotorula mucilaginosa and functional expression in yarrowia lipolytica. Yeast24(2), 69–78 (2007).
  • Hwang YO , KangSG, WooJHet al. Screening enantioselective epoxide hydrolase activities from marine microorganisms: detection of activities in erythrobacter spp. Mar. Biotechnol. 10(4), 366–373 (2008).
  • Phillips IR , ShephardEA. Flavin-containing monooxygenases: mutations, disease and drug response. Trends. Pharmacol. Sci. 29(6), 294–301 (2008).
  • Crettol S , PetrovicN, MurrayM. Pharmacogenetics of phase I and phase II drug metabolism. Curr. Pharm. Des. 16(2), 204–219 (2010).
  • Iyanagi T . Molecular mechanism of phase I and phase II drug-metabolizing enzymes: implications for detoxification. Int. Rev. Cytol. 260, 35–112 (2007).
  • Williams JA , HylandR, JonesBCet al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/auc) ratios. Drug Metab. Dispos. 32(11), 1201–1208 (2004).
  • Mackenzie PI , BockKW, BurchellBet al. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet. Genomics15(10), 677–685 (2005).
  • Tukey RH , StrassburgCP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol. 40, 581–616 (2000).
  • Bock KW , KöhleC. Topological aspects of oligomeric UDP-glucuronosyltransferases in endoplasmic reticulum membranes: advances and open questions. Biochem Pharmacol. 77(9), 1458–1465 (2009).
  • Radominska-Pandya A , BrattonS, LittleJM. A historical overview of the heterologous expression of mammalian UDP-glucuronosyltransferase isoforms over the past twenty years. Curr. Drug Metab. 6(2), 141–160 (2005).
  • Coller JK , ChristrupLL, SomogyiAA. Role of active metabolites in the use of opioids. Eur. J. Clin. Pharmacol. 65(2), 121–139 (2009).
  • Stachulski AV : The chemistry and biological activity of acyl glucuronides. Curr. Opin. Drug Discov. Devel. 10(1), 58–66 (2007).
  • Ritter JK . Roles of glucuronidation and UDP-glucuronosyltransferases in xenobiotic bioactivation reactions. Chem. Biol. Interact. 129(1–2), 171–193 (2000).
  • Schulz C , BoeckS, HeinemannV, StemmlerHJ. UGT1A1 genotyping: a predictor of irinotecan-associated side effects and drug efficacy? Anticancer Drugs20(10), 867–879 (2009).
  • Saudan C , BaumeN, RobinsonN, AvoisL, ManginP, SaugyM. Testosterone and doping control. Br. J. Sports. Med. 40 (Suppl. 1), i21–i24 (2006).
  • Alonen A , GartmanM, AitioO, FinelM, Yli-KauhaluomaJ, KostiainenR. Synthesis, structure characterization, and enzyme screening of clenbuterol glucuronides. Eur. J. Pharm. Sci. 37(5), 581–587 (2009).
  • Thevis M , OpfermannG, SchmicklerH, SchanzerW. Mass spectrometry of steroid glucuronide conjugates. Ii-electron impact fragmentation of 3-keto-4-en- and 3-keto-5 α-steroid-17-o-β glucuronides and 5 α-steroid-3 α,17β-diol 3- and 17-glucuronides. J. Mass. Spectrom. 36(9), 998–1012 (2001).
  • Dell D . Labile metabolites. Chromatographia59, S139–S148 (2004).
  • Johnson CH , WilsonID, HardingJRet al. NMR spectroscopic studies on the in vitro acyl glucuronide migration kinetics of ibuprofen ((+/-)-(r,s)-2-(4-isobutylphenyl) propanoic acid), its metabolites, and analogues. Anal. Chem. 79(22), 8720–8727 (2007).
  • Kenny JR , MaggsJL, MengXet al. Syntheses and characterization of the acyl glucuronide and hydroxy metabolites of diclofenac. J. Med. Chem. 47(11), 2816–2825 (2004).
  • Meng X , MaggsJL, Pryde Dcet al. Cyclization of the acyl glucuronide metabolite of a neutral endopeptidase inhibitor to an electrophilic glutarimide: synthesis, reactivity, and mechanistic analysis. J. Med. Chem. 50(24), 6165–6176 (2007).
  • Al-Zoughool M , TalaskaG. High performance liquid chromatography method for determination of N-glucuronidation of 4-aminobiphenyl by mouse, rat, and human liver microsomes. Anal. Biochem. 340(2), 352–358 (2005).
  • Luo H , HawesEM, MckayG, MidhaKK. Synthesis and characterization of quaternary ammonium-linked glucuronide metabolites of drugs with an aliphatic tertiary amine group. J. Pharm. Sci. 81(11), 1079–1083 (1992).
  • Mutlib AE , NelsonWL. Synthesis and identification of the N-glucuronides of norgallopamil and norverapamil, unusual metabolites of gallopamil and verapamil. J. Pharmacol. Exp. Ther. 252(2), 593–599 (1990).
  • Vashishtha SC , HawesEM, MckayG, MccannDJ. Synthesis and identification of the quaternary ammonium-linked glucuronide of 1-phenylimidazole in human liver microsomes and investigation of the human UDP-glucuronosyltransferases involved. Drug Metab. Dispos. 28(9), 1009–1013 (2000).
  • Pallmann T , JonasU, WagnerMet al. Enzyme-assisted synthesis and structural characterization of pure benzodiazepine glucuronide epimers. Eur. J. Pharm. Sci. 29, 29 (2009).
  • Anderson S , Luffer-AtlasD, KnadlerMP. Predicting circulating human metabolites: how good are we? Chem. Res. Toxicol. 22(2), 243–256 (2009).
  • Dragan CA , BuchheitD, BischoffD, EbnerT, BureikM. Glucuronide production by whole-cell biotransformation using genetically engineered fission yeast schizosaccharomyces pombe. Drug Metab. Dispos. 38(3), 509–515 (2010).
  • Amadio J , MurphyCD. Biotransformation of fluorobiphenyl by cunninghamella elegans. Appl. Microbiol. Biotechnol. 3, 3 (2009).
  • Collier AC , KeelanJA, Van Zijl PE, Paxton JW, Mitchell MD, Tingle MD. Human placental glucuronidation and transport of 3´azido-3´-deoxythymidine and uridine diphosphate glucuronic acid. Drug Metab. Dispos. 32(8), 813–820 (2004).
  • Freiser H , JiangQ. Optimization of the enzymatic hydrolysis and analysis of plasma conjugated γ-CEHC and sulfated long-chain carboxychromanols, metabolites of vitamin E. Anal. Biochem. 388(2), 260–265 (2009).
  • Liu X , TamVH, HuM. Disposition of flavonoids via enteric recycling: determination of the UDP-glucuronosyltransferase isoforms responsible for the metabolism of flavonoids in intact CACO-2 TC7 cells using sirna. Mol. Pharm. 4(6), 873–882 (2007).
  • Bai X , XieYY, LiuJ, QuJL, KanoY, YuanD. Isolation and identification of urinary metabolites of kakkalide in rats. Drug Metab. Dispos. 38(2), 281–286 (2010).
  • Zhang ZF , LiuY, LuoP, ZhangH. Separation and purification of two flavone glucuronides from erigeron multiradiatus (lindl.) benth with macroporous resins. J. Biomed. Biotechnol. 11, 875629 (2009).
  • Kittelmann M , RheineggerU, EspigatAet al. Preparative enzymatic synthesis of the acylglucuronide of mycophenolic acid. Biocatalysis345(6–7), 825–829 (2003).
  • Caron P , TrottierJ, VerreaultM, BelangerJ, KaedingJ, BarbierO. Enzymatic production of bile acid glucuronides used as analytical standards for liquid chromatography-mass spectrometry analyses. Mol. Pharm. 3(3), 293–302 (2006).
  • Schwaninger AE , MeyerMR, ZappJ, MaurerHH. The role of human UDP glucuronyltransferases on the formation of the methylenedioxymethamphetamine (ecstasy) phase II metabolites r- and s-3-methoxymethamphetamine 4-O-glucuronides. Drug Metab. Dispos. 37(11), 2212–2220 (2009).
  • Fujita K , MogamiA, HayashiA, KamatakiT. Establishment of Salmonella strain expressing catalytically active human UDP-glucuronosyltransferase 1A1 (UGT1A1). Life Sci. 66(20), 1955–1967 (2000).
  • Dellinger RW , ChenG, Blevins-PrimeauAS, KrzeminskiJ, AminS, LazarusP. Glucuronidation of phip and n-oh-phip by UDP-glucuronosyltransferase 1A10. Carcinogenesis28(11), 2412–2418 (2007).
  • Fisher MB , PaineMF, StrelevitzTJ, WrightonSA. The role of hepatic and extrahepatic UDP-glucuronosyltransferases in human drug metabolism. Drug Metab. Rev. 33(3–4), 273–297 (2001).
  • Liu J , BalasubramanianMK. 1,3-β-glucan synthase: a useful target for antifungal drugs. Curr. Drug Targets Infect. Disord. 1(2), 159–169 (2001).
  • Tanaka N , KonomiM, OsumiM, TakegawaK. Characterization of schizosaccharomyces pombe mutant deficient in UDP-galactose transport activity. Yeast18(10), 903–914 (2001).
  • Passarinha LA , BonifacioMJ, QueirozJA. Application of a fed-batch bioprocess for the heterologous production of hscomt in Escherichia coli. J. Microbiol. Biotechnol. 19(9), 972–981 (2009).
  • Passarinha LA , BonifacioMJ, Soares-Da-SilvaP, QueirozJA. A new approach on the purification of recombinant human soluble catechol-O-methyltransferase from an Escherichia coli extract using hydrophobic interaction chromatography. J. Chromatogr. A1177(2), 287–296 (2008).
  • Wang H , VathGM, KawamuraAet al. Over-expression, purification, and characterization of recombinant human arylamine N-acetyltransferase 1. Protein J. 24(2), 65–77 (2005).
  • Riches Z , BloomerJC, CoughtrieMW. Comparison of 2-aminophenol and 4-nitrophenol as in vitro probe substrates for the major human hepatic sulfotransferase, sult1A1, demonstrates improved selectivity with 2-aminophenol. Biochem. Pharmacol. 74(2), 352–358 (2007).
  • Ingelman-Sundberg M . Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol. Sci. 25(4), 193–200 (2004).
  • Daly AK . Pharmacogenetics and pharmacogenomics. Pharmacogenomics8(11), 1493–1496 (2007).
  • Rodriguez-Antona C , JandeM, RaneA, Ingelman-SundbergM. Identification and phenotype characterization of two cyp3a haplotypes causing different enzymatic capacity in fetal livers. Clin. Pharmacol. Ther. 77(4), 259–270 (2005).
  • Dai D , TangJ, RoseRet al. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J. Pharmacol. Exp. Ther. 299(3), 825–831 (2001).
  • Blaisdell J , Jorge-NebertLF, CoulterSet al. Discovery of new potentially defective alleles of human CYP2C9. Pharmacogenetics14(8), 527–537 (2004).
  • Kirchheiner J , KleinC, MeinekeIet al. Bupropion and 4-oh-bupropion pharmacokinetics in relation to genetic polymorphisms in cyp2B6. Pharmacogenetics. 13(10), 619–626 (2003).
  • Komori M , NishioK, OhiH, KitadaM, KamatakiT. Molecular cloning and sequence analysis of CDNA containing the entire coding region for human fetal liver cytochrome P450. J. Biochem. 105(2), 161–163 (1989).
  • Domanski TL , FintaC, HalpertJR, ZaphiropoulosPG. CDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol. Pharmacol. 59(2), 386–392 (2001).
  • Westlind A , MalmeboS, JohanssonIet al. Cloning and tissue distribution of a novel human cytochrome P450 of the CYP3A subfamily, CYP3A43. Biochem. Biophys. Res. Commun. 281(5), 1349–1355 (2001).
  • Gellner K , EiseltR, HustertEet al. Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene. Pharmacogenetics. 11(2), 111–121 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.