1,020
Views
18
CrossRef citations to date
0
Altmetric
Mini Focus Issue: Dried Blood Spots - Review

State-Of-The-Art Dried Blood Spot Analysis: an Overview of Recent Advances and Future Trends

&
Pages 2187-2208 | Published online: 21 Aug 2013

References

  • Mei JV , AlexanderJR, AdamBW, HannonWH. Use of filter paper for the collection and analysis of human whole blood specimens. J. Nutr. 131(5), 1631S–1636S (2001).
  • Mess JN , TaillonMP, CoteC, GarofoloF. Dried blood spot on-card derivatization: an alternative form of sample handling to overcome the instability of thiorphan in biological matrix. Biomed. Chromatogr. 26(12), 1617–1624 (2012).
  • Kong ST , LinHS, ChingJ, HoPC. Evaluation of dried blood spots as sample matrix for gas chromatography/mass spectrometry based metabolomic profiling. Anal. Chem. 83(11), 4314–4318 (2011).
  • Deng C , DengY, WangB, YangX. Gas chromatography-mass spectrometry method for determination of phenylalanine and tyrosine in neonatal blood spots. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 780(2), 407–413 (2002).
  • Spector LG , HechtSS, OgnjanovicS, CarmellaSG, RossJA. Detection of cotinine in newborn dried blood spots. Cancer Epidemiol. Biomarkers Prev. 16(9), 1902–1905 (2007).
  • Green MD , MountDL, NetteyH. High-performance liquid chromatographic assay for the simultaneous determination of sulfadoxine and pyrimethamine from whole blood dried onto filter paper. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 767(1), 159–162 (2002).
  • Blessborn D , RomsingS, AnnerbergAet al. Development and validation of an automated solid-phase extraction and liquid chromatographic method for determination of lumefantrine in capillary blood on sampling paper. J. Pharm. Biomed. Anal. 45(2), 282–287 (2007).
  • Malm M , LindegardhN, BergqvistY. Automated solid-phase extraction method for the determination of piperaquine in capillary blood applied onto sampling paper by liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 809(1), 43–49 (2004).
  • Allanson AL , CottonMM, TetteyJN, BoyterAC. Determination of rifampicin in human plasma and blood spots by high performance liquid chromatography with UV detection: a potential method for therapeutic drug monitoring. J. Pharm. Biomed. Anal. 44(4), 963–969 (2007).
  • Tawa R , HiroseS, FujimotoT. Determination of the aminoglycoside antibiotics sisomicin and netilmicin in dried blood spots on filter discs, by high-performance liquid chromatography with pre-column derivatization and fluorimetric detection. J. Chromatogr. 490(1), 125–132 (1989).
  • Croes K , MccarthyPT, FlanaganRJ. Simple and rapid HPLC of quinine, hydroxychloroquine, chloroquine, and desethylchloroquine in serum, whole blood, and filter paper-adsorbed dry blood. J. Anal. Toxicol. 18(5), 255–260 (1994).
  • Nageswara RR , NaiduCG, GuruPK, PadiyaR, AgwaneSB. Determination of gemifloxacin on dried blood spots by hydrophilic interaction liquid chromatography with fluorescence detector: application to pharmacokinetics in rats. Biomed. Chromatogr. 26(12), 1534–1542 (2012).
  • Romsing S , LindegardhN, BergqvistY. Determination of tafenoquine in dried blood spots and plasma using LC and fluorescence detection. Bioanalysis3(16), 1847–1853 (2011).
  • Rao RN , BompelliS, MauryaPK. High-performance liquid chromatographic determination of anti- hypertensive drugs on dried blood spots using a fluorescence detector - method development and validation. Biomed. Chromatogr. doi: 10.1002/bmc.1599 (2011) (Epub ahead of print).
  • Piraud M , Vianey-SabanC, PetritisKet al. ESI–MS/MS analysis of underivatised amino acids: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Fragmentation study of 79 molecules of biological interest in positive and negative ionisation mode. Rapid Commun. Mass Spectrom. 17(12), 1297–1311 (2003).
  • La Marca G , MalvagiaS, FilippiLet al. Rapid assay of topiramate in dried blood spots by a new liquid chromatography–tandem mass spectrometric method. J. Pharm. Biomed. Anal. 48(5), 1392–1396 (2008).
  • Kromdijk W , MulderJW, SmitPM, Ter Heine R, Beijnen JH, Huitema AD. Therapeutic drug monitoring of antiretroviral drugs at home using dried blood spots: a proof of concept study. Antivir. Ther. doi: 10.3851/IMP2501 (2012) (Epub ahead of print).
  • Castillo-Mancilla JR , ZhengJH, RowerJEet al. Tenofovir, emtricitabine, and tenofovir diphosphate in dried blood spots for determining recent and cumulative drug exposure. AIDS Res. Hum. Retroviruses29(2), 384–390 (2013).
  • Ansari M , UppugunduriCR, DeglonJet al. A simplified method for busulfan monitoring using dried blood spot in combination with liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 26(12), 1437–1446 (2012).
  • Nageswara Rao R , Satyanarayana Raju S, Mastan Vali R, Sarma VU, Girija Sankar G. LC–ESI–MS/MS determination of paclitaxel on dried blood spots. Biomed. Chromatogr. 26(5), 616–621 (2012).
  • Chase BA , JohnstonSA, LegutkiJB. Evaluation of biological sample preparation for immunosignature-based diagnostics. Clin. Vaccine Immunol. 19(3), 352–358 (2012).
  • Brindle E , FujitaM, ShoferJ, O’ConnorKA. Serum, plasma, and dried blood spot high-sensitivity C-reactive protein enzyme immunoassay for population research. J. Immunol. Methods362(1–2), 112–120 (2010).
  • La Marca G , MalvagiaS, FilippiL, LuceriF, MonetiG, GuerriniR. A new rapid micromethod for the assay of phenobarbital from dried blood spots by LC–tandem mass spectrometry. Epilepsia50(12), 2658–2662 (2009).
  • Lin YQ , KhetarpalR, ZhangY, SongH, LiSS. Combination of ELISA and dried blood spot technique for the quantification of large molecules using exenatide as a model. J. Pharmacol. Toxicol. Methods64(2), 124–128 (2011).
  • Snijdewind IJ , Van Kampen JJ, Fraaij PL, Van Der Ende ME, Osterhaus AD, Gruters RA. Current and future applications of dried blood spots in viral disease management. Antiviral Res. 93(3), 309–321 (2012).
  • Masciotra S , KhamadiS, BileEet al. Evaluation of blood collection filter papers for HIV-1 DNA PCR. J. Clin. Virol. 55(2), 101–106 (2012).
  • Vidya M , SaravananS, RifkinSet al. Dried blood spots versus plasma for the quantitation of HIV-1 RNA using a real-time PCR, m2000rt assay. J. Virol. Methods181(2), 177–181 (2012).
  • De Vries JJ , WesselsE, KorverAMet al. Rapid genotyping of cytomegalovirus in dried blood spots by multiplex real-time PCR assays targeting the envelope glycoprotein gB and gH genes. J. Clin. Microbiol. 50(2), 232–237 (2012).
  • Meesters R , HooffG, Van Huizen N, Gruters R, Luider T. Impact of internal standard addition on dried blood spot analysis in bioanalytical method development. Bioanalysis3(20), 2357–2364 (2011).
  • Meesters RJ , HooffGP, GrutersR, van Kampen JJ, Luider TM. Incurred sample reanalysis comparison of dried blood spots and plasma samples on the measurement of lopinavir in clinical samples. Bioanalysis4(3), 237–240 (2012).
  • Meesters RJ , Van Kampen JJ, Reedijk MLet al. Ultrafast and high-throughput mass spectrometric assay for therapeutic drug monitoring of antiretroviral drugs in pediatric HIV-1 infection applying dried blood spots. Anal. Bioanal. Chem. 398(1), 319–328 (2010).
  • Meesters RJ , ZhangJ, Van Huizen NA, Hooff GP, Gruters RA, Luider TM. Dried matrix on paper disks: the next generation DBS microsampling technique for managing the hematocrit effect in DBS analysis. Bioanalysis4(16), 2027–2035 (2012).
  • Kertesz V , Van Berkel GJ. Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform. J. Mass Spectrom. 45(3), 252–260 (2010).
  • Chace DH . Mass spectrometry in newborn and metabolic screening: historical perspective and future directions. J. Mass Spectrom. 44(2), 163–170 (2009).
  • Hachani J , Duban-DeweerS, PottiezG, RenomG, FlahautC, PeriniJM. MALDI-TOF MS profiling as the first-tier screen for sickle cell disease in neonates: matching throughput to objectives. Proteomics5(7–8), 405–414 (2011).
  • Spooner N , LadR, BarfieldM. Dried blood spots as a sample collection technique for the determination of pharmacokinetics in clinical studies: considerations for the validation of a quantitative bioanalytical method. Anal. Chem. 81(4), 1557–1563 (2009).
  • Beaudette P , BatemanKP. Discovery stage pharmacokinetics using dried blood spots. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 809(1), 153–158 (2004).
  • Kissinger PT . Thinking about dried blood spots for pharmacokinetic assays and therapeutic drug monitoring. Bioanalysis3(20), 2263–2266 (2011).
  • Patel P , MullaH, TannaS, PandyaH. Facilitating pharmacokinetic studies in children: a new use of dried blood spots. Arch. Dis. Child. 95(6), 484–487 (2010).
  • Edelbroek PM , Van Der Heijden J, Stolk LM. Dried blood spot methods in therapeutic drug monitoring: methods, assays, and pitfalls. Ther. Drug Monit. 31(3), 327–336 (2009).
  • Ter Heine R , RosingH, Van Gorp ECet al. Quantification of protease inhibitors and non-nucleoside reverse transcriptase inhibitors in dried blood spots by liquid chromatography–triple quadrupole mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 867(2), 205–212 (2008).
  • Coombes EJ , GamlenTR, BatstoneGF, LeighPN. A phenytoin assay using dried blood spot samples suitable for domiciliary therapeutic drug monitoring. Ann. Clin. Biochem. 21(6), 519–522 (1984).
  • Meesters RJ , Van Kampen JJ, Reedijk MLet al. Ultrafast and high-throughput mass spectrometric assay for therapeutic drug monitoring of antiretroviral drugs in pediatric HIV-1 infection applying dried blood spots. Anal. Bioanal. Chem. 398(1), 319–328.
  • Johannessen A , TroseidM, CalmyA. Dried blood spots can expand access to virological monitoring of HIV treatment in resource-limited settings. J. Antimicrob. Chemother. 64(6), 1126–1129 (2009).
  • Rohrman BA , Richards-KortumRR. A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip12(17), 3082–3088 (2012).
  • Hooff G , MeestersR, Van Kampen Jet al. Dried blood spot UHPLC–MS/MS analysis of oseltamivir and oseltamivircarboxylate – a validated assay for the clinic. Anal. Bioanal. Chem. 400, 3473–3479 (2011).
  • Kromdijk W , MulderJW, RosingH, SmitPM, BeijnenJH, HuitemaAD. Use of dried blood spots for the determination of plasma concentrations of nevirapine and efavirenz. J. Antimicrob. Chemother. 67(5), 1211–1216 (2012).
  • Dainty TC , RichmondES, DaviesI, BlackwellMP. Dried blood spot bioanalysis: an evaluation of techniques and opportunities for reduction and refinement in mouse and juvenile rat toxicokinetic studies. Int. J. Toxicol. 31(1), 4–13 (2012).
  • Stove CP , IngelsAS, De KeselPM, LambertWE. Dried blood spots in toxicology: from the cradle to the grave? Crit. Rev. Toxicol. 42(3), 230–243 (2012).
  • Kaendler K , WarrenA, LloydP, SimsJ, SickertD. Evaluation of dried blood spots for the quantification of therapeutic monoclonal antibodies and detection of anti-drug antibodies. Bianalysis5(5), 613–622 (2013).
  • Lin YQ , ZhangY, LiC, LiL, ZhangK, LiS. Evaluation of dry blood spot technique for quantification of an Anti-CD20 monoclonal antibody drug in human blood samples. J. Pharmacol. Toxicol. Methods65(1), 44–48 (2012).
  • Sleczka BG , D’ArienzoCJ, TymiakAA, OlahTV. Quantitation of therapeutic proteins following direct trypsin digestion of dried blood spot samples and detection by LC–MS-based bioanalytical methods in drug discovery. Bioanalysis4(1), 29–40 (2012).
  • Mcdade TW , Shell-DuncanB. Whole blood collected on filter paper provides a minimally invasive method for assessing human transferrin receptor level. J. Nutr. 132(12), 3760–3763 (2002).
  • Mcdade TW , WilliamsS, SnodgrassJJ. What a drop can do: dried blood spots as a minimally invasive method for integrating biomarkers into population-based research. Demography44(4), 899–925 (2007).
  • Edwards RL , GriffithsP, BunchJ, CooperHJ. Top-down proteomics and direct surface sampling of neonatal dried blood spots: diagnosis of unknown hemoglobin variants. J. Am. Soc. Mass Spectrom. 23(11), 1921–1930 (2012).
  • Edwards RL , CreeseAJ, BaumertM, GriffithsP, BunchJ, CooperHJ. Hemoglobin variant analysis via direct surface sampling of dried blood spots coupled with high-resolution mass spectrometry. Anal. Chem. 83(6), 2265–2270 (2011).
  • Li W , ZhangJ, TseFL. Strategies in quantitative LC–MS/MS analysis of unstable small molecules in biological matrices. Biomed. Chromatogr. 25(1–2), 258–277 (2011).
  • Rao RN , MauryaPK, RameshM, SrinivasR, AgwaneSB. Development of a validated high-throughput LC–ESI-MS method for determination of sirolimus on dried blood spots. Biomed. Chromatogr. 24(12), 1356–1364 (2010).
  • D’Arienzo CJ , JiQC, DiscenzaLet al. DBS sampling can be used to stabilize prodrugs in drug discovery rodent studies without the addition of esterase inhibitors. Bioanalysis2(8), 1415–1422 (2010).
  • Li W , TseFL. Dried blood spot sampling in combination with LC–MS/MS for quantitative analysis of small molecules. Biomed. Chromatogr. 24(1), 49–65 (2010).
  • Johnson CJ , ChristiansonCD, SheaffCN, LaineDF, ZimmerJS, NeedhamSR. Use of conventional bioanalytical devices to automate DBS extractions in liquid-handling dispensing tips. Bioanalysis3(20), 2303–2310 (2011).
  • Wong P , PhamR, WhitelyCet al. Application of automated serial blood sampling and dried blood spot technique with liquid chromatography–tandem mass spectrometry for pharmacokinetic studies in mice. J. Pharm. Biomed. Anal. 56(3), 604–608 (2011).
  • Thomas A , DeglonJ, SteimerT, ManginP, DaaliY, StaubC. On-line desorption of dried blood spots coupled to hydrophilic interaction/reversed-phase LC/MS/MS system for the simultaneous analysis of drugs and their polar metabolites. J. Sep. Sci. 33(6–7), 873–879 (2010).
  • Deglon J , ThomasA, ManginP, StaubC. Direct analysis of dried blood spots coupled with mass spectrometry: concepts and biomedical applications. Anal. Bioanal. Chem. 402(8), 2485–2498 (2012).
  • Wiseman JM , EvansCA, BowenCL, KennedyJH. Direct analysis of dried blood spots utilizing desorption electrospray ionization (DESI) mass spectrometry. Analyst135(4), 720–725 (2010).
  • Crawford E , GordonJ, WuJT, MusselmanB, LiuR, YuS. Direct analysis in real time coupled with dried spot sampling for bioanalysis in a drug-discovery setting. Bioanalysis3(11), 1217–1226 (2011).
  • Cody RB , LarameeJA, DurstHD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77(8), 2297–2302 (2005).
  • Jebrail MJ , YangH, MudrikJMet al. A digital microfluidic method for dried blood spot analysis. Lab Chip11(19), 3218–3224 (2011).
  • Shih SC , YangH, JebrailMJet al. Dried blood spot analysis by digital microfluidics coupled to nanoelectrospray ionization mass spectrometry. Anal. Chem. 84(8), 3731–3738 (2012).
  • Sheikhakbari S , Mokhtari-AzadT, SalimiVet al. The use of oral fluid samples spotted on filter paper for the detection of measles virus using nested rt-PCR. J. Clin. Lab. Anal. 26(3), 215–222 (2012).
  • Chibo D , RiddellMA, CattonMG, BirchCJ. Applicability of oral fluid collected onto filter paper for detection and genetic characterization of measles virus strains. J. Clin. Microbiol. 43(7), 3145–3149 (2005).
  • Lodoen CP , Eng Eibak LE, Rasmussen KE, Pedersen-Bjergaard S, Andersen T, Gjelstad A. Storage of oral fluid as dried spots on alginate and chitosan foam - a new concept for oral fluid collection. Bioanalysis5(3), 317–325 (2013).
  • Li Y , HenionJ, AbbottR, WangP. The use of a membrane filtration device to form dried plasma spots for the quantitative determination of guanfacine in whole blood. Rapid Commun. Mass Spectrom. 26(10), 1208–1212 (2012).
  • Thomas A , DeglonJ, LengletSet al. High-throughput phospholipidic fingerprinting by online desorption of dried spots and quadrupole–linear ion trap mass spectrometry: evaluation of atherosclerosis biomarkers in mouse plasma. Anal. Chem. 82(15), 6687–6694 (2010).
  • Christianson CD , LaineDF, ZimmerJSet al. Development and validation of an HPLC-MS/MS method for the analysis of dexamethasone from pig synovial fluid using dried matrix spotting. Bioanalysis2(11), 1829–1837 (2010).
  • Nozawa N , KoyanoS, YamamotoY, InamiY, KuraneI, InoueN. Real-time PCR assay using specimens on filter disks as a template for detection of cytomegalovirus in urine. J. Clin. Microbiol. 45(4), 1305–1307 (2007).
  • Barbas C , GarciaA, De Miguel L, Simo C. Evaluation of filter paper collection of urine samples for detection and measurement of organic acidurias by capillary electrophoresis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. B,780(1), 73–82 (2002).
  • Bang I . Ein verfahren zur mikrobestimmung von blutbestandteilen. Biochem. Z. 49, 19–39 (1913).
  • Guthrie R , SusiA. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics32, 338–343 (1963).
  • Barfield M , SpoonerN, LadR, ParryS, FowlesS. Application of dried blood spots combined with HPLC–MS/MS for the quantification of acetaminophen in toxicokinetic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. B870(1), 32–37 (2008).
  • Ingels AS , De Paepe P, Anseeuw Ket al. Dried blood spot punches for confirmation of suspected gamma-hydroxybutyric acid intoxications: validation of an optimized GC–MS procedure. Bioanalysis3(20), 2271–2281 (2011).
  • Jantos R , VeldstraJL, MatternR, BrookhuisKA, SkoppG. Analysis of 3,4-methylenedioxymetamphetamine: whole blood versus dried blood spots. J. Anal. Toxicol. 35(5), 269–273 (2011).
  • Mercolini L , MandrioliR, GerraG, RaggiMA. Analysis of cocaine and two metabolites in dried blood spots by liquid chromatography with fluorescence detection: a novel test for cocaine and alcohol intake. J. Chromatogr. A1217(46), 7242–7248 (2010).
  • Mercolini L , MandrioliR, SorellaVet al. Dried blood spots: liquid chromatography-mass spectrometry analysis of Δ9-tetrahydrocannabinol and its main metabolites. J. Chromatogr. A1271(1), 33–40 (2013).
  • Thomas A , GeyerH, SchanzerWet al. Sensitive determination of prohibited drugs in dried blood spots (DBS) for doping controls by means of a benchtop quadrupole/Orbitrap mass spectrometer. Anal. Bioanal. Chem. 403(5), 1279–1289 (2012).
  • Espy RD , ManickeNE, OuyangZ, CooksRG. Rapid analysis of whole blood by paper spray mass spectrometry for point-of-care therapeutic drug monitoring. Analyst137(10), 2344–2349 (2012).
  • Martin RM , PatelR, ZinovikAet al. Filter paper blood spot enzyme linked immunoassay for insulin and application in the evaluation of determinants of child insulin resistance. PloS One7(10), e46752 (2012).
  • Kehler JR , BowenCL, BoramSL, EvansCA. Application of DBS for quantitative assessment of the peptide exendin-4; comparison of plasma and DBS method by UHPLC–MS/MS. Bioanalysis2(8), 1461–1468 (2010).
  • Desilva B , GarofoloF, RocciMet al. 2012 white paper on recent issues in bioanalysis and alignment of multiple guidelines. Bioanalysis4(18), 2213–2226 (2012).
  • Timmerman P , WhiteS, GlobigS, LudtkeS, BrunetL, SmeragliaJ. EBF recommendation on the validation of bioanalytical methods for dried blood spots. Bioanalysis3(14), 1567–1575 (2011).
  • European Parliament and Council of the EU. Directive 2010/63/EU on the protection of animals used for scientific purposes. Official J. EU276, 33–79 (2010).
  • Langer EK , JohnsonKJ, ShaferMMet al. Characterization of the elemental composition of newborn blood spots using sector-field inductively coupled plasma-mass spectrometry. J. Expo. Sci. Environ. Epidemiol. 21(4), 355–364 (2011).
  • Chaudhuri SN , ButalaSJ, BallRW, BraniffCT. Pilot study for utilization of dried blood spots for screening of lead, mercury and cadmium in newborns. J. Expo. Sci. Environ. Epidemiol. 19(3), 298–316 (2009).
  • Di Martino MT , MichniewiczA, MartucciM, ParlatoG. EDTA is essential to recover lead from dried blood spots on filter paper. Clin. Chim. Acta. 350(1–2), 143–150 (2004).
  • Verebey K , EngYM, DavidowB, RamonA. Rapid, sensitive micro blood lead analysis: a mass screening technique for lead poisoning. J. Anal. Toxicol. 15(5), 237–240 (1991).
  • Suyagh MF , IheagwaramG, KolePLet al. Development and validation of a dried blood spot-HPLC assay for the determination of metronidazole in neonatal whole blood samples. Anal. Bioanal. Chem. 397(2), 687–693 (2010).
  • Meesters RJ . Bioanalytical LC separation techniques for quantitative analysis of free amino acids in human plasma. Bioanalysis5(4), 495–512 (2013).
  • Strnadova KA , HolubM, MuhlAet al. Long-term stability of amino acids and acylcarnitines in dried blood spots. Clin. Chem. 53(4), 717–722 (2007).
  • Deglon J , LauerE, ThomasA, ManginP, StaubC. Use of the dried blood spot sampling process coupled with fast gas chromatography and negative-ion chemical ionization tandem mass spectrometry: application to fluoxetine, norfluoxetine, reboxetine, and paroxetine analysis. Anal. Bioanal. Chem. 396(7), 2523–2532 (2010).
  • Deng C , JiJ, ZhangL, ZhangX. Diagnosis of congenital adrenal hyperplasia by rapid determination of 17alpha-hydroxyprogesterone in dried blood spots by gas chromatography/mass spectrometry following microwave-assisted silylation. Rapid Commun. Mass Spectrom. 19(20), 2974–2978 (2005).
  • Yoon HR . Two step derivatization for the analyses of organic, amino acids and glycines on filter paper plasma by GC–MS/SIM. Arch. Pharm. Res. 30(3), 387–395 (2007).
  • Ingels AS , LambertWE, StoveCP. Determination of gamma-hydroxybutyric acid in dried blood spots using a simple GC–MS method with direct “on spot” derivatization. Anal. Bioanal. Chem. 398(5), 2173–2182 (2010).
  • Droste JA , Verweij-Van Wissen CP, Burger DM. Simultaneous determination of the HIV drugs indinavir, amprenavir, saquinavir, ritonavir, lopinavir, nelfinavir, the nelfinavir hydroxymetabolite M8, and nevirapine in human plasma by reversed-phase high-performance liquid chromatography. Ther. Drug Monit. 25(3), 393–399 (2003).
  • Abu-Rabie P , DenniffP, SpoonerN, BrynjolffssenJ, GalluzzoP, SandersG. Method of applying internal standard to dried matrix spot samples for use in quantitative bioanalysis. Anal. Chem. 83(22), 8779–8786 (2011).
  • Damen CW , RosingH, SchellensJH, BeijnenJH. Application of dried blood spots combined with high-performance liquid chromatography coupled with electrospray ionisation tandem mass spectrometry for simultaneous quantification of vincristine and actinomycin-D. Anal. Bioanal. Chem. 394(4), 1171–1182 (2009).
  • Van Der Heijden J , De Beer Y, Hoogtanders Ket al. Therapeutic drug monitoring of everolimus using the dried blood spot method in combination with liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 50(4), 664–670 (2009).
  • Ooms JA , KnegtL, KosterEH. Exploration of a new concept for automated dried blood spot analysis using flow-through desorption and online SPE-MS/MS. Bioanalysis3(20), 2311–2320 (2011).
  • Li Y , HenionJ, AbbottR, WangP. Semi-automated direct elution of dried blood spots for the quantitative determination of guanfacine in human blood. Bioanalysis4(12), 1445–1456 (2012).
  • Kato K , WanigatungaAA, NeedhamLL, CalafatAM. Analysis of blood spots for polyfluoroalkyl chemicals. Anal. Chim. Acta656(1–2), 51–55 (2009).
  • Smit PW , Van Der Vlis T, Mabey Det al. The development and validation of dried blood spots for external quality assurance of syphilis serology. BMC Infec. Dis. 13, 102 (2013).
  • Jangam SR , YamadaDH, McfallSM, KelsoDM. Rapid, point-of-care extraction of human immunodeficiency virus type 1 proviral DNA from whole blood for detection by real-time PCR. J. Clin. Microbiol. 47(8), 2363–2368 (2009).
  • Benyshek DC . Use of dried blood spots: an ideal tool for medical anthropology “in the field”. J. Diabetes Sci. Technol. 4(2), 255–257 (2010).
  • Van Berkel GJ , PasilisSP, OvchinnikovaO. Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry. J. Mass Spec. JMS43(9), 1161–1180 (2008).
  • Manicke NE , YangQ, WangH, OraduS, OuyangZ, CooksRG. Assessment of paper spray ionization for quantitation of pharmaceuticals in blood spots. Int. J. Mass Spectrom. (300), 123–129 (2011).
  • Yang Q , ManickeNE, WangH, PetucciC, CooksRG, OuyangZ. Direct and quantitative analysis of underivatized acylcarnitines in serum and whole blood using paper spray mass spectrometry. Anal. Bioanal. Chem. 404(5), 1389–1397 (2012).
  • Zhao Y , LamM, WuD, MakR. Quantification of small molecules in plasma with direct analysis in real time tandem mass spectrometry, without sample preparation and liquid chromatographic separation. Rapid Commun. Mass Spectrom. 22(20), 3217–3224 (2008).
  • Ren X , PaehlerT, ZimmerM, GuoZ, ZaneP, EmmonsGT. Impact of various factors on radioactivity distribution in different DBS papers. Bioanalysis2(8), 1469–1475 (2010).
  • O’Mara M , Hudson-CurtisB, OlsonK, YuehY, DunnJ, SpoonerN. The effect of hematocrit and punch location on assay bias during quantitative bioanalysis of dried blood spot samples. Bioanalysis3(20), 2335–2347 (2011).
  • Denniff P , SpoonerN. The effect of hematocrit on assay bias when using DBS samples for the quantitative bioanalysis of drugs. Bioanalysis2(8), 1385–1395 (2010).
  • Holub M , TuschlK, RatschmannRet al. Influence of hematocrit and localisation of punch in dried blood spots on levels of amino acids and acylcarnitines measured by tandem mass spectrometry. Clin. Chim. Acta. 373(1–2), 27–31 (2006).
  • Liu G , SnappHM, JiQC. Internal standard tracked dilution to overcome challenges in dried blood spots and robotic sample preparation for liquid chromatography/tandem mass spectrometry assays. Rapid Commun. Mass Spectrom. 25(9), 1250–1256 (2011).
  • Irvine GB . Amino acid analysis. Methods Mol. Biol. 32, 257–265 (1994).
  • European Medicines Agency. Guidelines on bioanalytical method validation. London, UK (2011).
  • Youhnovski N , BergeronA, FurtadoM, GarofoloF. Pre-cut dried blood spot (PCDBS): an alternative to dried blood spot (DBS) technique to overcome hematocrit impact. Rapid Commun. Mass Spectrom. 25(19), 2951–2958 (2011).
  • Li F , ZulkoskiJ, FastD, MichaelS, Perforated dried blood spots: a novel format for accurate microsampling. Bioanalysis3(20), 2321–2333 (2011).
  • Li F , PlochS, FastD, MichaelS. Perforated dried blood spot accurate microsampling: the concept and its applications in toxicokinetic sample collection. J. Mass Spectrom. 47(5), 655–667 (2012).
  • Fan L , LeeJ, HallJ, TolentinoEJ, WuH, El-ShourbagyT. Implementing DBS methodology for the determination of Compound A in monkey blood: GLP method validation and investigation of the impact of blood spreading on performance. Bioanalysis3(11), 1241–1252 (2011).
  • Mei JV , ZobelSD, HallEM, De Jesus VR, Adam BW, Hannon WH. Performance properties of filter paper devices for whole blood collection. Bioanalysis2(8), 1397–1403 (2010).
  • Denniff P , SpoonerN. Effect of storage conditions on the weight and appearance of dried blood spot samples on various cellulose-based substrates. Bioanalysis2(11), 1817–1822 (2010).
  • Capiau S , StoveVV, LambertWE, StoveCP. Prediction of the hematocrit of dried blood spots via potassium measurement on a routine clinical chemistry analyzer. Anal. Chem. 85(1), 404–410 (2013).
  • Cable RG , SteeleWR, MelmedRSet al. The difference between fingerstick and venous hemoglobin and hematocrit varies by sex and iron stores. Transfusion52(5), 1031–1040 (2012).
  • Fan L , LeeJA. Managing the effect of hematocrit on DBS analysis in a regulated environment. Bioanalysis4(4), 345–347 (2012).
  • Rowland M , EmmonsGT. Use of dried blood spots in drug development: pharmacokinetic considerations. AAPS J. 12(3), 290–293 (2010).
  • Emmons G , RowlandM. Pharmacokinetic considerations as to when to use dried blood spot sampling. Bioanalysis2(11), 1791–1796 (2010).
  • Wickremsinhe ER , AbdulBG, HuangNHet al. Dried blood spot sampling: coupling bioanalytical feasibility, blood-plasma partitioning and transferability to in vivo preclinical studies. Bioanalysis3(14), 1635–1646 (2011).
  • Smith C , SkyesA, RobinsonS, ThomasE. Evaluation of blood microsampling techniques and sampling sites for the analysis of drugs by HPLC-MS. Bioanalysis3(2), 145–156 (2011).
  • Xu G , ChenJS, PhadnisRet al. Application of DBS sampling in combination with LC-MS/MS for pharmacokinetic evaluation of a compound with species-specific blood-to-plasma partitioning. Bioanalysis4(16), 2037–2047 (2012).
  • Prieto JA , AndradeF, LageS, Aldamiz-EchevarriaL. Comparison of plasma and dry blood spots as samples for the determination of nitisinone (NTBC) by high-performance liquid chromatography–tandem mass spectrometry. Study of the stability of the samples at different temperatures. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(11–12), 671–676 (2011).
  • Jonsson O , Palma Villar R, Nilsson LBet al. Capillary microsampling of 25 microl blood for the determination of toxicokinetic parameters in regulatory studies in animals. Bioanalysis4(6), 661–674 (2012).
  • The European Biooanalysis Forum. The 5th Open Meeting. Old battles, New Horizons. Hesperia Tower Conference Center Barcelona, Spain, 14–16 November 2012.
  • Egan RW . A general method for quantitative separation of prostaglandins by paper chromatography. Anal. Biochem. 68(2), 654–657 (1975).
  • Mirnaghi FS , PawliszynJ. Reusable solid-phase microextraction coating for direct immersion whole-blood analysis and extracted blood spot sampling coupled with liquid chromatography–tandem mass spectrometry and direct analysis in real time-tandem mass spectrometry. Anal. Chem. 84(19), 8301–8309 (2012).
  • Bowen CL , VolpattiJ, CadesJ, Licea-PerezH, EvansCA. Evaluation of glucuronide metabolite stability in dried blood spots. Bioanalysis4(23), 2823–2832 (2012).
  • Liu G , JiQC, JemalM, TymiakAA, ArnoldME. Approach to evaluating dried blood spot sample stability during drying process and discovery of a treated card to maintain analyte stability by rapid on-card pH modification. Anal. Chem. 83(23), 9033–9038 (2011).
  • Blessborn D , SkoldK, ZeebergD, KaewkhaoK, SkoldO, AhnoffM. Heat stabilization of blood spot samples for determination of metabolically unstable drug compounds. Bioanalysis5(1), 31–39 (2013).
  • Chen X , ZhaoH, HatsisP, AminJ. Investigation of dried blood spot card-induced interferences in liquid chromatography/mass spectrometry. J. Pharm. Biomed. Anal. 61, 30–37 (2012).
  • Wang H , LiuJ, CooksRG, OuyangZ. Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew. Chem. Int. Ed. Engl. 49(5), 877–880 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.