464
Views
0
CrossRef citations to date
0
Altmetric
Review

The Challenges of LC–MS/MS Analysis of Opiates and Opioids in Urine

Pages 2803-2820 | Published online: 21 Nov 2013

References

  • Matthes HW , MaldonadoR, SimoninFet al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the µ-opioid receptor gene. Nature383, 819–823 (1996).
  • Fricchione GL , MendozaA, StefanoGB. Morphine and its psychiatric implications. Adv. Neuroimmunol. 4(2), 117–131 (1994).
  • Pattinson KT . Opioids and the control of respiration. Br. J. Anaesth. 100(6), 747–758 (2008).
  • Manara L , BianchiG, FerrettiP, TavaniA. Inhibition of gastrointestinal transit by morphine in rats results from direct drug action on gut opioid sites. J. Pharmacol. Exp. Ther. 237(3), 945–949 (1986).
  • Feng Y , HeX, YangY, ChaoD, LazarusLH, XiaY. Current research on opioid receptor function. Curr. Drug Targets13(2), 230–246 (2012).
  • Boyer EW . Management of opioid analgesic overdose. N. Engl. J. Med. 367(2), 146–155 (2012).
  • Manchikanti L , HelmS2nd, FellowsBet al. Opioid epidemic in the United States. Pain Physician15, ES9–ES38 (2012).
  • Manchikanti L , SinghA. Therapeutic opioids: a ten-year perspective on the complexities and complications of the escalating use, abuse and non-medical use of opioids. Pain Physician11, S63–S88 (2008).
  • Bronstein AC , SpykerDA, CantilenaLRJr. Rumack BH, Dart RC. 2011 annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 29th annual report. Clin. Toxicol. Phila)50(10), 911–1164 (2012).
  • Cunha-Oliveira T , RegoAC, OliveiraCR. Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Res. Rev. 58, 192–208 (2008).
  • Karow A , VertheinU, KrauszM, SchäferI. Association of personality disorders, family conflicts and treatment with quality of life in opiate addiction. Eur. Addict. Res. 14, 38–46 (2008).
  • Ivanov IS , Schulz,KP, PalmeroRC, NewcornJH. Neurobiology and evidence-based biological treatments for substance abuse disorders. CNS Spectr. 11(11), 864–877 (2006).
  • Birnbaum HG , WhiteAG, ReynoldsJLet al. Estimated costs of prescription opioid analgesic abuse in the United States in 2001. A societal perspective. Clin. J. Pain22, 667–676 (2006).
  • Rook EJ , HuitemaADR, van den Brink W, van Ree JM, Beijnen JH. Pharmacokinetics and pharmacokinetic variability of heroin and its metabolites: review of the literature. Curr. Clin. Pharmacol. 1(1), 109–118 (2006).
  • Baselt RC . Disposition of Toxic Drugs and Chemicals in Man. (7th Edition). Biomedical Publications, Foster City, CA, USA (2004).
  • Milne RW , NationRL, SomogyiAA. The disposition of morphine and its 3- and 6-glucuronide metabolites in humans and animals, and the importance of the metabolites to the pharmacological effects of morphine. Drug Metab. Rev. 28(3), 345–472 (1996).
  • Coffman BL , RiosGR, KingCD, TephlyTR. Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab. Dispos. 25(1), 1–4 (1997).
  • Coffman BL , KingCD, RiosGR, TephlyTR. The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268). Drug Metab. Dispos. 26(1), 73–77 (1998).
  • Paul D , StandiferKM, InturrisiCE, PasternakGW. Pharmacological characterization of morphine-6-beta-glucuronide, a very potent morphine metabolite. J. Pharmacol. Exp. Ther. 251(2), 477–483 (1989).
  • Yeh SY , GorodetzkyCW, KrebsHA. Isolation and identification of morphine 3- and 6-glucuronides, morphine-3,6-diglucuronide, morphine 3-ethereal sulfate, normorphine, and normorphine 6-glucuronide as morphine metabolites in humans. J. Pharm. Sci. 66(9), 1288–1293 (1977).
  • Projean D , Morin P-E, Tu TM, Ducharme J. Identification of CYP3A4 and CYP2C8 as the major cytochrome P450s responsible for morphine N-demethylation in human liver microsomes. Xenobiotica33(8), 841–854 (2003).
  • Mannering GJ , DixonAC, BakerEM 3rd, Asami T. The in vivo liberation of morphine from codeine in man. J. Pharmacol. Exp. Ther. 111(2), 142–146 (1954).
  • Nomof N , ElliottHW, ParkerKD. Actions and metabolism of codeine (methylmorphine) administration by continuous intravenous infusion to humans. Clin. Toxicol. 11(5), 517–529 (1977).
  • Srinivasan V , WielboD, SimpkinsJ, KarlixJ, SloanK, TebbettI. Analgesic and immunomodulatory effects of codeine and codeine 6-glucuronide. Pharm. Res. 13(2), 296–300 (1996).
  • Cone EJ , DarwinWD, GorodetzkyCW. Comparative metabolism of codeine in man, rat, dog, guinea-pig and rabbit: identification of four new metabolites. J. Pharm. Pharmacol. 31, 314–317 (1979).
  • Cone EJ , HeitHA, YaleHC, GourlayD. Evidence of morphine metabolism to hydromorphone in pain patients chronically treated with morphine. J. Anal. Toxicol. 30(1), 1–6 (2006).
  • Oyler JM , ConeEJ, HosephREJr, HuestisMA. Identification of hydrocodone in human urine following controlled codeine administration. J. Anal. Toxicol. 24(7), 530–535 (2000).
  • Cone EJ , DarwinWD, GorodetzkyCW, TanT. Comparative metabolism of hydrocodone in man, rat, guinea pig, rabbit and dog. Drug Metab. Dispos. 6(4), 488–493 (1978).
  • Otton SV , SchadelM, CheungSW, KaplanHI, BustoUE, SellersEM. CYP2D6 phenotype determines the metabolic conversion of hydrocodone to hydromorphone. Clin. Pharmacol. Ther. 54(5), 463–472 (1993).
  • Valtier S , BebartaVS. Excretion profile of hydrocodone, hydromorphone and norhydrocodone in urine following single dose administration of hydrocodone to healthy volunteers. J. Anal. Toxicol. 36(7), 507–514 (2012).
  • Baselt RC , StewartCB. Determination of oxycodone and a major metabolite in urine by electron-capture GLC. J. Anal. Toxicol. 2(3), 107–109 (1978).
  • Lalovic B , KharaschE, HofferC, RislerL, Liu-Chen L-Y, Shen DD. Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin. Pharmacol. Ther. 79(5), 461–479 (2006).
  • Cone EJ , HeltsleyR, BlackDL, MitchellJM, LoDicoCP, FlegelRR. Prescription opioids. I. Metabolism and excretion patterns of oxycodone in urine following controlled single dose administration. J. Anal. Toxicol. 37(5), 255–264 (2013).
  • Cone EJ , DarwinWD, BuchwaldWF, GorodetzkyCW. Oxymorphone metabolism and urinary excretion in human, rat, guinea-pig, rabbit, and dog. Drug Metab. Dispos. 11(5), 446–450 (1983).
  • Labroo RB , PaineMF, ThummelKE, KharaschED. Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy and drug interactions. Drug Metab. Dispos. 25(9), 1072–1080 (1997).
  • Moody DE . Metabolic and toxicological considerations of the opioid replacement therapy and analgesic drugs: methadone and buprenorphine. Expert Opin. Drug Metab. Toxicol. 9(6), 675–697 (2013).
  • Yang A , ArfkenCL, Johanson C-E. Steps physicians report taking to reduce diversion of buprenorphine. Am. J. Addict. 22(3), 184–187 (2013).
  • Marsch LA , StephensMAC, MudricT, StrainEC, BigelowGE, JohnsonRE. Predictors of outcome in LAAM, buprenorphine and methadone treatment for opioid dependence. Exp. Clin. Psychopharmacol. 13(4), 293–302 (2005).
  • Manchikanti L , ManchukondaR, PampatiVet al. Does random urine drug testing reduce illicit drug use in chronic pain patients receiving opioids? Pain Physician 9(2), 123–129 (2006).
  • Katz N , FanciulloGJ. Role of urine toxicology testing in the management of chronic opioid therapy. Clin. J. Pain18(4 Suppl.), S76–S82 (2002).
  • Reisfield GM , SalazarE, BertholfRL. Rational use and interpretation of urine drug testing in chronic opioid therapy. Ann. Clin. Lab. Sci. 37(4), 301–314 (2007).
  • Reisfield GM , GoldbergerBA, BertholfRL. ‘False-positive’ and ‘false-negative’ test results in clinical urine drug testing. Bioanalysis1(5), 937–952 (2009).
  • Wu AHB , McKayC, BroussardLAet al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: recommendations for the use of laboratory tests to support poisoned patients who present to the emergency department. Clin. Chem. 49(3), 357–379 (2003).
  • Villena VP . Beating the system: a study of a creatinine assay and its efficacy in authenticating human urine specimens. J. Anal. Toxicol. 34(1), 39–44 (2010).
  • Cook JD , CaplanYH, LoDicoCP, BushDM. The characterization of human urine for specimen validity determination in workplace drug testing: a review. J. Anal. Toxicol. 24(7), 579–588 (2000).
  • Fox EJ , TwiggerS, AllenKR. Criteria for opiate identification using liquid chromatography linked to tandem mass spectrometry: problems in routine practice. Ann. Clin. Biochem. 46(Pt 1), 50–57 (2009).
  • French D , WuAHB, LynchK. Hydrophilic interaction LC–MS/MS analysis of opioids in urine: significance of glucuronide metabolites. Bioanalysis3(23), 2603–2612 (2011).
  • Dickerson JA , LahaTJ, PaganoMB, O’DonnellBR, HoofnagleAN. Improved detection of opioid use in chronic pain patients through monitoring of opioid glucuronides in urine. J. Anal. Toxicol. 36(8), 541–547 (2012).
  • Annesley TM . Ion suppression in mass spectrometry. Clin. Chem. 49(7), 1041–1044 (2003).
  • Matuszewski BK , ConstanzerML, Chavez-EngCM. Strategies for the assessment of matrix effect matrix effect in quantitative bioanalytical methods based on HPLC–MS/MS. Anal. Chem. 75(13), 3019–3030 (2003).
  • Dams R , HuestisMA, LambertWE, MurphyCM. Matrix effect in bioanalysis of illicit drugs with LC–MS/MS: influence of ionization type, sample preparation and biofluid. J. Am. Soc. Mass Spectrom. 14(11), 1290–1294 (2003).
  • Goldberger BA , ConeEJ. Confirmatory tests for drugs in the workplace by gas chromatography–mass spectrometry. J. Chromatogr. A674(1–2), 73–86 (1994).
  • Marquet P , LachâtreG. Liquid chromatography–mass spectrometry: potential in forensic and clinical toxicology. J. Chromatogr. B Biomed. Sci. Appl. 733(1–2), 93–118 (1999).
  • Heltsley R , ZichtermanA, BlackDLet al. Urine drug testing of chronic pain patients. II. Prevalence patterns of prescription opiates and metabolites. J. Anal. Toxicol. 34, 32–38 (2010).
  • Cone EJ , ZichtermanA, HeltsleyRet al. Urine testing for norcodeine, norhydrodone, and noroxycodone facilitates interpretation and reduces false negatives. Forensic Sci. Int. 198(1), 58–61 (2010).
  • Concheiro M , CastroAD, QuintelaO, CruzA, López-RivadullaM. Determination of illicit drugs and their metabolites in human urine by liquid chromatography tandem mass spectrometry including relative ion intensity criteria. J. Anal. Toxicol. 31(9), 573–580 (2007).
  • Fitzgerald RL , GriffinTL, Yun Y-Met al. Dilute and shoot: analysis of drugs of abuse using selected reaction monitoring for quantification and full scan product ion spectra for identification. J. Anal. Toxicol. 36, 106–111 (2012).
  • Dams R , MurphyCM, LambertWE, HuestisMA. Urine drug testing for opioids, cocaine and metabolites by direct injection liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17(14), 1665–1670 (2003).
  • Shakleya DM , DamsR, ChooRE, JonesH, HuestisMA. Simultaneous liquid chromatography–mass spectrometry quantification of urinary opiates, cocaine, and metabolites in opiate-dependent pregnant women in methadone-maintenance treatment. J. Anal. Toxicol. 34(1), 17–25 (2010).
  • Dowling G , ReganL, TierneyJ, NangleM. A hybrid liquid chromatography–mass spectrometry strategy in a forensic laboratory for opioid, cocaine and amphetamine classes in human urine using a hybrid linear ion trap-triple quadrupole mass spectrometer. J. Chromatogr. A1217(44), 6857–6866 (2010).
  • Edinboro LE , BackerRC, PoklisA. Direct ana¬lysis of opiates in urine by liquid chromatography–tandem mass spectrometry. J. Anal. Toxicol. 29(7), 704–710 (2005).
  • Thörngren J-O . Östervall F, Garle M. A high-throughput multicomponent screening method for diuretics, masking agents, central nervous system (CNS) stimulants and opiates in human urine by UPLC–MS/MS. J. Mass Spectrom. 43(7), 980–992 (2008).
  • Gustavsson E , AnderssonM, StephansonN, BeckO. Validation of direct injection electrospray LC–MS/MS for confirmation of opiates in urine drug testing. J. Mass Spectrom. 42(7), 881–889 (2007).
  • Bonfiglio R , KingRC, OlahTV, MerkleK. The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds. Rapid Commun. Mass Spectrom. 13(12), 1175–1185 (1999).
  • Murphy CM , HuestisMA. LC-ESI-MS/MS ana¬lysis for the quantification of morphine, codeine, morphine-3-β-D-glucuronide, morphine-6-β-D--glucuronide, and codeine-6-β-D--glucuronide in human urine. J. Mass Spectrom. 40, 1412–1416 (2005).
  • Coles R , KushnirMM, NelsonGJ, McMillinGA, UrryFM. Simultaneous determination of codeine, morphine, hydrocodone, hydromorphone, oxycodone and 6-acetylmorphine in urine, serum, plasma, whole blood, and meconium by LC–MS-MS. J. Anal. Toxicol. 31(1), 1–10 (2007).
  • Berg T , LundanesE, ChristophersenAS, StandDH. Determination of opiates and cocaine in urine by high pH mobile phase reversed phase UPLC–MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877(4), 421–432 (2009).
  • McMillin GA , DavisR, CarlisleH, ClarkC, MarinSJ, MoodyDE. Patterns of free (unconjugated) buprenorphine, norbuprenorphine and their glucuronides in urine using liquid chromatography–tandem mass spectrometry. J. Anal. Toxicol. 36(2), 81–87 (2012).
  • Musshoff F , TrafkowskiJ, KuepperU, MadeaB. An automated and fully validated LC–MS/MS procedure for the simultaneous determination of 11 opioids used in palliative care, with 5 of their metabolites. J. Mass Spectrom. 41(5), 633–640 (2006).
  • Maralikova B , WeinmannW. Confirmatory analysis for drugs of abuse in plasma and urine by high-performance liquid chromatography–tandem mass spectrometry with respect to criteria for compound identification. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 811(1), 21–30 (2004).
  • de Jager AD , BaileyNL. Online extraction LC–MS/MS method for simultaneous quantitative confirmation of urine drugs of abuse and metabolites: amphetamines, opiates, cocaine, cannabis, benzodiazepines and methadone. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(29), 2642–2652 (2011).
  • Liu A-C . Lin T-Y, Su L-W, Fuh M-R. Online solid-phase extraction liquid chromatography–electrospray-tandem mass spectrometry analysis of buprenorphine and three metabolites in human urine. Talanta75(1), 198–204 (2008).
  • Schaefer N , PetersB, SchmidtP, EwaldAH. Development and validation of twoLC–MS/MS methods for the detection and quantification of amphetamines, designer amphetamines, benzoylecgonine, benzodiazepines, opiates, and opioids in urine using turbulent flow chromatography. Anal. Bioanal. Chem. 405(1), 247–258 (2013).
  • Hemström P , IrqumK. Hydrophilic interaction chromatography. J. Sep. Sci. 29(12), 1784–1821 (2006).
  • Brown PR , KrstulovicAM. Practical aspects of reversed-phase liquid chromatography applied to biochemical and biomedical research. Anal. Biochem. 99(1), 1–21 (1979).
  • Jian W , EdomRW, XuY, WengN. Recent advances in application of hydrophilic interaction chromatography for quantitative analysis. J. Sep. Sci. 33, 681–697 (2010).
  • Jian W , XuY, EdomRW, WengN. Analysis of polar metabolites by hydrophilic interaction chromatography–MS/MS. Bioanalysis3(8), 899–912 (2011).
  • Cone EJ , GorodetzkyCW, YousefnejadD, BuchwaldWF, JohnsonRE. The metabolism and excretion of buprenorphine in humans. Drug Metab. Dispos. 12(5), 577–581 (1984).
  • Huang M-Z . Yuan C-H, Cheng S-C, Cho Y-T, Shiea J. Ambient ionization mass spectrometry. Annu. Rev. Anal. Chem. 3, 43–65 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.