392
Views
2
CrossRef citations to date
0
Altmetric
Review

Metabolite Structure Analysis by High-Resolution MS: Supporting Drug-Development Studies

, &
Pages 463-479 | Published online: 18 Feb 2013

References

  • Hughes JP , ReesS, KalindjianSB, PhilpottKL. Principles of early drug discovery. Br. J. Pharmacol. 162(6), 1239–1249 (2011).
  • Jorgensen WL . Efficient drug lead discovery and optimization. Acc. Chem. Res. 42(6), 724–733 (2009).
  • Kerns EH , DiL. Pharmaceutical profiling in drug discovery. Drug Discov. Today8(7), 316–323 (2003).
  • McKim JM Jr . Building a tiered approach to in vitro predictive toxicity screening: a focus on assays with in vivo relevance. Comb. Chem. High Throughput. Screen. 13(2), 188–206 (2010).
  • Anderson S , Luffer-AtlasD, KnadlerMP. Predicting circulating human metabolites: how good are we? Chem. Res. Toxicol. 22(2), 243–256 (2009).
  • Dalvie D , ObachRS, KangPet al. Assessment of three human in vitro systems in generation of major human excretory and circulating metabolites. Chem. Res. Toxicol. 22(2), 357–368 (2009).
  • Penner N , ClunkL, PrakashC. Human radiolabeled mass balance studies: objectives, utilities and applications. Biopharm. Drug Disp. 30(4), 185–203 (2009).
  • Roffey S , ObachR, GedgeJ, SmithD. What is the objective of the mass balance study? A retrospective analysis of data in animal and human excretion studies employing radiolabeled drugs. Drug Metab. Rev. 39(1), 17–43 (2007).
  • Dear G , BeaumontC, RobertsAet al. Approaches for the rapid identification of drug metabolites in early clinical studies. Bioanalysis3(2), 197–213 (2011).
  • Gao H , DengS, ObachR. A simple liquid chromatography–tandem MS method to determine relative plasma exposures of drug metabolites across species for metabolite safety assessments. Drug Metab. Disp. 38(12), 2147–2156 (2010).
  • Obach RS , NeddermannA, SmithDA. Radiolabelled mass-balance excretion and metabolism studies in labatory animals: are they still necessary? Xenobiotica42(1), 46–56 (2012).
  • Ma S , Zhu M. Recent advances in applications of liquid-chromatography MS to the analysis of reactive drug metabolites. Chemico-Biological Interactions179(1), 25–37 (2009).
  • Annesley TM . Ion suppression in MS. Clin. Chem. 49(7), 1041–1044 (2003).
  • Nakamura M . Analyses of benzodiazepines and their metabolites in various biological matrices by LC–MS(/MS). Biomed. Chromatogr. 25(12), 1283–1307 (2011).
  • Dams R , HuestisMA, LambertWE, MurphyCM. Matrix effect in bio-analysis of illicit drugs with LC–MS/MS: influence of ionization type, sample preparation, and biofluid. J. Am. Soc. Mass Spectrom. 14(11), 1290–1294 (2003).
  • Meyer M , HH M. Current applications of high-resolution MS in drug metabolism studies. Anal. Bioanal. Chem. 403(5), 1221–1231 (2012).
  • Ma S , ChowdhurySK, AltonKB. Application of MS for metabolite identification. Curr. Drug Metab7(5), 503–523 (2006).
  • Korfmacher WA . Principles and applications of LC–MS in new drug discovery. Drug Discov. Today10(20), 1357–1367 (2005).
  • Want EJ , CravattBF, SiuzdakG. The expanding role of MS in metabolite profiling and characterization. Chembiochem. 6(11), 1941–1951 (2005).
  • Zhang NR , YuS, TillerP, YehS, MahanE, EmaryWB. Quantitation of small molecules using high-resolution accurate mass spectrometers – a different approach for analysis of biological samples. Rapid Commun. Mass Spectrom. 23(7), 1085–1094 (2009).
  • Bateman KP , KellmannM, MuensterH, PappR, TaylorL. Quantitative–qualitative data acquisition using a benchtop Orbitrap mass spectrometer. J. Am. Soc. Mass Spectrom. 20(8), 1441–1450 (2009).
  • Mann M , Kelleher NL. Precision proteomics: the case for high resolution and high mass accuracy. Proc. Natl Acad. Sci. USA105(47), 18132–18138 (2008).
  • Barbara JE , KazmiF, MuranjanS, TorenPC, ParkinsonA. High-resolution MS elucidates metabonate (false metabolite) formation from alkylamine drugs during in vitro metabolite profiling. Drug Metab. Dispos. 40(10), 1966–1975 (2012).
  • Wei X , SunW, ShiXet al. MetSign: a computational platform for high-resolution MS-based metabolomics. Anal. Chem. 83(20), 7668–7675 (2011).
  • Ma S , Chowdhury SK. Application of LC-high-resolution MS with ‘intelligent’ data mining tools for screening reactive drug metabolites. Bioanalysis4(5), 501–510 (2012).
  • Castellino S , GrosecloseMR, WagnerD. MALDI imaging MS: bridging biology and chemistry in drug development. Bioanalysis3(21), 2427–2441 (2011).
  • Rompp A , GuentherS, TakatsZ, SpenglerB. Mass spectrometry imaging with high resolution in mass and space (HR(2) MSI) for reliable investigation of drug compound distributions on the cellular level. Anal. Bioanal. Chem. 401(1), 65–73 (2011).
  • Cornett DS , FrappierSL, CaprioliRM. MALDI-FTICR imaging MS of drugs and metabolites in tissue. Anal. Chem. 80(14), 5648–5653 (2008).
  • Walch A , RauserS, DeiningerSO, HoflerH. MALDI imaging MS for direct tissue analysis: a new frontier for molecular histology. Histochem. Cell Biol. 130(3), 421–434 (2008).
  • Bristow A . Accurate mass measurement for the determination of elemental formula – a tutorial. Mass Spectrom. Rev. 25(1), 99–111 (2006).
  • McLafferty F . Interpretation of Mass Spectra. University Science Books, Herndon, VA, USA (1980)
  • Miura D , TsujiY, TakahashiK, WariishiH, SaitoK. A strategy for the determination of the elemental composition by fourier transform ion cyclotron resonance MS based on isotopic peak ratios. Anal. Chem. 82(13), 5887–5891 (2010).
  • Clauser KR , BakerP, BurlingameAL. Role of accurate mass measurement (+/-10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal. Chem. 71(14), 2871–2882 (1999).
  • Fjeldsted J . The mass defect, isotope clusters and accurate mass for elemental determination. In: Liquid Chromatography Time-Of-Flight Mass Spectrometry. Wiley, 17–34 (2009)
  • Cameron A , Wichers E. Report of the international commission on atomic weights. J. Am. Chem. Soc. 84(22), 4175–4197 (1962).
  • Volmer DA , LeslieA. Dealing with the masses: a tutorial on accurate masses, mass 32 uncertainties, and mass defects. Spectroscopy 1 June (2007)
  • Godwin H . Half-life of radiocarbon. Nature195, 984–984 (1962).
  • Zhang H , ZhangD, RayK. A software filter to remove interference ions from drug metabolites in accurate mass liquid chromatography/mass spectrometric analyses. J. Mass Spectrom. 38(10), 1110–1112 (2003).
  • Holcapek M , KolarovaL, NobilisM. High-performance liquid chromatography-tandem MS in the identification and determination of phase I and phase II drug metabolites. Anal. Bioanal. Chem. 391(1), 59–78 (2008).
  • Zhang H , ZhangD, RayK, ZhuM. Mass defect filter technique and its applications to drug metabolite identification by high-resolution MS. J. Mass Spectrom. 44(7), 999–1016 (2009).
  • Sleno L . The use of mass defect in modern MS. J. Mass Spectrom. 47(2), 226–236 (2012).
  • Zhu M , MaL, ZhangDet al. Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high resolution MS data. Drug Metab. Dispos. 34(10), 1722–1733 (2006).
  • Zhang H , ZhuM, RayK, MaL, ZhangD. Mass defect profiles of biological matrices and the general applicability of mass defect filtering for metabolite identification. Rapid Commun. Mass Spectrom. 22(13), 2082–2088 (2008).
  • Watson J . Introduction to Mass Spectometry. Raven Press, NY, USA (1985).
  • Ferrer I , ThurmanE. Liquid Chromatography Time-of-Flight MS: Principles, Tools and Applications for Accurate Mass Analysis. John Wiley & Sons, Hoboken, NJ, USA (2009).
  • Marshall AG , Hendrickson CL. High-resolution mass spectrometers. Annu. Rev. Anal. Chem. (Palo. Alto. Calif.)1, 579–599 (2008).
  • Allwood JW , Goodacre R. An introduction to liquid chromatography–MS instrumentation applied in plant metabolomic analyses. Phytochem. Anal. 21(1), 33–47 (2010).
  • Perry RH , CooksRG, NollRJ. Orbitrap MS: instrumentation, ion motion and applications. Mass Spectrom. Rev. 27(6), 661–699 (2008).
  • Schaub TM , HendricksonCL, HorningS, QuinnJP, SenkoMW, MarshallAG. High-performance MS: Fourier transform ion cyclotron resonance at 14.5 Tesla. Anal. Chem. 80(11), 3985–3990 (2008).
  • Wright P . Metabolite identification by MS: 40 years of evolution. Xenobiotica41(8), 670–686 (2011).
  • Liang Y , WangG, XieL, ShengL. Recent developments in liquid chromatography/MS and emerging technologies for metabolite identification. Curr. Drug Metab. 12(4), 329–344 (2011).
  • Pelander A , DeckerP, BaessmannC, OjanperaI. Evaluation of a high resolving power time-of-flight mass spectrometer for drug analysis in terms of resolving power and acquisition rate. J. Am. Soc. Mass Spectrom. 22(2), 379–385 (2011).
  • Bateman K , Castro-PerezJ, WronaMet al. MSE with mass defect filtering for in vitro and in vivo metabolite identification. Rapid Commun. Mass Spectrom. 21(9), 1485–1496 (2007).
  • Dear G , Munoz-MuriedasJ, BeaumontCet al. Sites of metabolic substitution: investigating metabolite structures utilising ion mobility and molecular modeling. Rapid Commun. Mass Spectrom. 24(21), 3157–3162 (2010).
  • Shimiziu A , OheT, ChibaM. A novel method for the determination of the site of glucuronidation by ion mobility spectrometry-MS. Drug Metabolism Disposition40(8), 1456–1459 (2012).
  • Kanu A , DwivediP, TamM, MatzL, Hill Jr H. Ion mobility-MS. J. Mass Spectrom. 43(1), 1–22 (2008).
  • Verbeck G , RuotoloB, SawyerH, GilligK, RussellD. A fundamental introduction to ion mobility MS applied to the analysis of biomolecules. J. Biomolecular Tech. 13(2), 56–61 (2002).
  • Smith D , KnapmanT, CampuzanoIet al. Deciphering drift time measurements from travelling wave ion mobility spectrometry- MS studies. Eur. J. Mass Spectrom. 15, 113–130 (2009).
  • Marshall A , HendricksonC, JacksonG. Fourier transform ion cyclotron resonance MS: a primer. Mass Spec.Reviews17(1), 1–35 (1998).
  • Scigelova M , HornshawM, GiannakopulosA, MakarovA. Fourier transform MS. Mol.Cell Proteomics10(7), M111.009431 (2011).
  • Heeren R , KleinnijenhuisA, McDonnellL, MizeT. A mini-review of MS using high-performance FTICR-MS methods. Anal. Bioanal. Chem. 378(4), 1048–1058 (2004).
  • Makarov A . Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal. Chem. 72(6), 1156–1162 (2000).
  • Perry R , CooksG, NollR. Orbitrap MS: Instrumentation, ion motion and applications. Mass Spectrom. Rev. 27(6), 661–699 (2008).
  • Scigelova M , Makarov A. Advances in bioanalytical LC–MS using the OrbitrapTM mass analyzer. Bioanalysis1(4), 741–754 (2009).
  • Michalski A , DamocE, LangeOet al. Ultra high resolution linear ion trap Orbitrap mass spectrometer (Orbitrap® Elite) facilitates top down LC–MS/MS and versatile peptide fragmentation modes. Mol. Cell Proteomics11(3), O111.013698 (2012).
  • Yuan M , BreitkopfSB, YangX, AsaraJM. A positive/negative ion-switching, targeted MS-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7(5), 872–881 (2012).
  • Liu DQ , ArisonBH, StearnsRA, KimD, VincentSH. Characterization of two cyclic metabolites of sitagliptin. Drug Metab. Dispos. 35(4), 521–524 (2007).
  • Dealler SF , HawkeyPM, MillarMR. Enzymatic degradation of urinary indoxyl sulfate by Providencia stuartii and Klebsiella pneumoniae causes the purple urine bag syndrome. J. Clin. Microbiol. 26(10), 2152–2156 (1988).
  • Picard N , DridiD, SauvageFL, BoughattasNA, MarquetP. General unknown screening procedure for the characterization of human drug metabolites: application to loratadine phase I metabolism. J. Sep. Sci. 32(13), 2209–2217 (2009).
  • Li AC , GohdesMA, ShouWZ: ‘N-in-one’ strategy for metabolite identification using a liquid chromatography/hybrid triple quadrupole linear ion trap instrument using multiple dependent product ion scans triggered with full mass scan. Rapid Commun. Mass Spectrom. 21(8), 1421–1430 (2007).
  • Lim H , ChenJ, CookyK, SensenhauserC, SilvaJ, EvansD. A generic method to detect electrophilic intermediatesusing isotopic pattern triggered data-dependent high-resolution accurate MS. Rapid Commun. Mass Spectrom. 22(8), 1295–1311 (2008).
  • Yu LJ , ChenY, DeninnoMP, O’ConnellTN, HopCE. Identification of a novel glutathione adduct of diclofenac, 4´-hydroxy-2´-glutathion-deschloro-diclofenac, upon incubation with human liver microsomes. Drug Metab. Dispos. 33(4), 484–488 (2005).
  • Castro-Perez J , PlumbR, LiangL, YangE. A high-throughput liquid chromatography/tandem MS method for screening glutathione conjugates using exact mass neutral loss acquisition. Rapid Commun. Mass Spectrom. 19(6), 798–804 (2005).
  • Barbara J , Castro-Perez J. High-resolution chromatography/time-of-flight MSE with in silico data mining is an information-rich approach to reactive metabolite screening. Rapid Commun. Mass Spectrom. 25(20), 3029–3040 (2011).
  • Erve J , BeyerC, ManzinoL, TalaatR. Metabolite identification in rat brain microdialysates by direct infusion nanoelectrospray ionization after desalting on a ZipTip and LTQ/Orbitrap MS. Rapid Commun. Mass Spectrom. 23(24), 4003–4012 (2009).
  • Ruan Q , Zhu M. Investigation of bioactivation of ticlopidine using linear ion trap/orbitrap MS and an improved mass defect filtering technique. Chem. Res. Toxicol. 23(5), 909–917 (2010).
  • Tiller P , YuS, BatemanKet al. Fractional mass filtering as a means to assess circulating metabolites in early human clinical studies. Rapid Commun. Mass Spectrom. 22(22), 3510–3516 (2008).
  • Zhu M , MaL, ZhangH, GriffithW. Detection and structural characterization of glutathione-trapped reactive metabolites using liquid-chromatography–high-resolution MS and mass defect filtering. Anal. Chem. 79(21), 8333–8341 (2007).
  • Zhu M , ZhangH, Griffith Humphreys W. Drug metabolite profiling and identification by high-resolution MS. J. Biol. Chem. 286(29), 25419–25425 (2011).
  • Yu C , ChenC, GoryckiF, NeissT. A rapid method for quantitatively estimating metabolites in human plasma in the absence of synthetic standards using a combination of liquid chromatography/MS and radiometric detection. Rapid Commun. Mass Spectrom. 21(4), 497–502 (2007).
  • Vishwanathan K , BabalolaK, WangJet al. Obtaining exposures of metabolites in preclinical species through plasma pooling and quantitative NMR. Addressing metabolites in safety testing (MIST) guidance without using radiolabeled compounds and chemically synthesized metabolite standards. Chem. Res. Toxicol. 22(2), 311–322 (2009).
  • Walker GS , RyderTF, SharmaR, SmithEB, FreundA. Validation of isolated metabolites from drug metabolism studies as analytical standards by quantitative NMR. Drug Metab. Disp. 39(3), 433–440 (2011).
  • Ma S , LiZ, LeeK, ChowdhuryS. Determination of exposure multiples of human metabolites for MIST assessment in preclinical safety species without using reference standards or radiolabeled compounds. Chem. Res. Toxicol. 23(12), 1871–1873 (2010).
  • Yang Y , GrubbM, LukC, Griffith-HumphreysW, JosephsJ. Quantitative estimation of circulating metabolites without synthetic standards by using ultra-high-performance liquid chromatography/high resolution accurate MS in combination with UV correction. Rapid. Commun. Mass Spectrom. 25(21), 3245–3251 (2011).
  • Ramanathan R , RaghavanN, ComezogluS, Griffith Humphreys W. A low flow ionization technique to integrate quantitative and qualitative small molecule bioanalysis. Int. J. Mass Spectrom. 301(1–3), 127–135 (2011).
  • Schadt S , ChenL, BischoffD. Evaluation of relative LC–MS response of metabolites to parent drug in LC/nanospray ionization MS: potential implications in MIST assessment. J. Mass Spectrom. 46(12), 1281–1286 (2011).
  • Hamilton RA , GarnettWR, KlineBJ. Determination of mean valproic acid serum level by assay of a single pooled sample. Clin. Pharmacol. Ther. 29(3), 408–413 (1981).
  • Hopfgartner G , BourgogneE. Quantitative high-throughput analysis of drugs in biological matrices by MS. Mass Spectrom. Rev. 22(3), 195–214 (2003).
  • van Dongen WD , NiessenWM. LC–MS systems for quantitative bioanalysis. Bioanalysis4(19), 2391–2399 (2012).
  • Rousu T , TolonenA. Comparison of unit resolution SRM and TOF-MS at 12,000 mass resolution for quantitative bioanalysis of 11 steroids from human plasma. Bioanalysis4(5), 555–563 (2012).
  • Dillen L , CoolsW, VereykenLet al. Comparison of triple quadrupole and high-resolution TOF-MS for quantification of peptides. Bioanalysis4(5), 565–579 (2012).
  • Acquadro E , CabellaC, GhianiS, MiragoliL, BucciEM, CorpilloD. Matrix-assisted laser desorption ionization imaging MS detection of a magnetic resonance imaging contrast agent in mouse liver. Anal. Chem. 81(7), 2779–2784 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.