7,666
Views
776
CrossRef citations to date
0
Altmetric
Review

Review of the stability of biochar in soils: predictability of O:C molar ratios

Pages 289-303 | Published online: 10 Apr 2014

Bibliography

  • Clark JS, North Atlantic Treaty Organization. Scientific Affairs Division. Sediment Records of Biomass Burning and Global Change. Springer, Berlin, New York (1997).
  • Fowles M. Black carbon sequestration as an alternative to bioenergy. Biomass and Bioenergy31(6),426–432 (2007).
  • Goldberg ED. Black Carbon in the Environment: Properties and Distribution (1985).
  • Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biol. Fertil. Soils35(4),219–230 (2002).
  • Laird DA. The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron. J.100(1),178–181 (2008).
  • Lehmann J. Bio-energy in the black. Front Ecol. Environ.5(7),381–387 (2007).
  • Kuhlbusch TAJ, Crutzen PJ. Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochem. Cycles9(4),491–501 (1995).
  • Haberstroh PR, Brandes JA, Gélinas Y, Dickens AF, Wirick S, Cody G. Chemical composition of the graphitic black carbon fraction in riverine and marine sediments at sub-micron scales using carbon x-ray spectromicroscopy. Geochimica et Cosmochimica Acta70(6),1483–1494 (2006).
  • Kuhlbusch TAJ, Zepp RG, Miller WL, Burke RA. Carbon monoxide fluxes of different soil layers in upland Canadian boreal forests. Tellus Series B-Chemical and Physical Meteorology50(4),353–365 (1998).
  • Masiello CA, Druffel ER, nbsp, M. Black carbon in deep-sea sediments. Science280(5371),1911–1913 (1998).
  • Masiello CA, Druffel ERM, Currie LA. Radiocarbon measurements of black carbon in aerosols and ocean sediments. Geochim. Cosmochim. Acta66(6),1025–1036 (2002).
  • Bridgwater AV. Catalysis in thermal biomass conversion. Appl. Catal. A Gen.116(1–2),5–47 (1994).
  • Bridgwater AV. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catal. Today29(1–4),285–295 (1996).
  • Bridgwater AV, Peacocke GVC. Fast pyrolysis processes for biomass. Renew. Sust. Energy Rev.4(1),1–73 (2000).
  • Ouml;zçimen D, Karaosmanoglu F. Production and characterization of bio-oil and biochar from rapeseed cake. Renew. Energy29(5),779–787 (2004).
  • Bridgwater AV. Renewable fuels and chemicals by thermal processing of biomass. Chem. Engin. J.91(2–3),87–102 (2003).
  • Abdullah H, Wu HW. Biochar as a fuel: 1. properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy Fuels23(8),4174–4181 (2009).
  • Küçük MM, Demirbas A. Biomass conversion processes. Energ. Convers. Manag.38(2),151–165 (1997).
  • Inyang M, Gao B, Pullammanappallil P, Ding WC, Zimmerman AR. Biochar from anaerobically digested sugarcane bagasse. Bioresour. Technol.101(22),8868–8872 (2010).
  • Cao N, Darmstadt H, Soutric F, Roy C. Thermogravimetric study on the steam activation of charcoals obtained by vacuum and atmospheric pyrolysis of softwood bark residues. Carbon40(4),471–479 (2002).
  • KütahyalI C, Eral M. Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation. Separ. Purif. Tech.40(2),109–114 (2004).
  • Shafizadeh F. Pyrolysis and combustion of cellulosic materials. In: Advances in Carbohydrate Chemistry. Wolfrom ML (Ed.). Academic Press Inc., New York, USA, 419–474 (1968).
  • Alexis MA, Rumpel C, Knicker H et al. Thermal alteration of organic matter during a shrubland fire: a field study. Org. Geochem.41(7),690–697 (2010).
  • Ubbelohde AR, Lewis FA. Graphite and its Crystal Compounds. Clarendon Press, Oxford, UK (1960).
  • Boehm HP. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon32(5),759–769 (1994).
  • Bonijoly M, Oberlin M, Oberlin A. A possible mechanism for natural graphite formation. Int. J. Coal Geol.1(4),283–312 (1982).
  • Baker RTK, Harris PS, Terry S. Unique form of filamentous carbon. Nature253(5486),37–39 (1975).
  • Raveendran K, Ganesh A, Khilar KC. Pyrolysis characteristics of biomass and biomass components. Fuel75(8),987–998 (1996).
  • Neeft JPA, Makkee M, Moulijn JA. Catalytic oxidation of carbon black – I. Activity of catalysts and classification of oxidation profiles. Fuel77(3),111–119 (1998).
  • Schmidt MWI, Noack AG. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem. Cy.14(3),777–793 (2000).
  • Pieri DC, Baloga SM. Eruption rate, area, and length relationships for some Hawaiian lava flows. J. Volcanol. Geoth. Res.30(1–2),29–45 (1986).
  • Antal MJ, Grønli M. The art, science, and technology of charcoal production. Ind. Eng. Chem. Res.42(8),1619–1640 (2003).
  • Knicker H, Totsche KU, Almendros G, Gonzalez-Vila FJ. Condensation degree of burnt peat and plant residues and the reliability of solid-state VACP MAS C-13 NMR spectra obtained from pyrogenic humic material. Org. Geochem.36(10),1359–1377 (2005).
  • Shrestha G, Traina S, Swanston C. Black carbon’s properties and role in the environment: a comprehensive review. Sustainability2(1),294–320 (2010).
  • Gonzalez-Perez JA, Gonzalez-Vila FJ, Almendros G, Knicker H. The effect of fire on soil organic matter – a review. Environment International30(6),855–870 (2004).
  • Elmquist M, Cornelissen G, Kukulska Z, Gustafsson Ö. Distinct oxidative stabilities of char versus soot black carbon: implications for quantification and environmental recalcitrance. Global Biogeochem. Cy.20(2),GB2009 (2006).
  • Hedges JI, Eglinton G, Hatcher PG et al. The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org. Geochem.31(10),945–958 (2000).
  • Ghent ED. Plagioclase-garnet-Al 2 SiO 5 -quartz; a potential geobarometer-geothermometer. Am. Mineral.61(7–8),710–714 (1976).
  • Masiello CA. New directions in black carbon organic geochemistry. Mar. Chem.92(1–4),201–213 (2004).
  • Bruun S, Jensen ES, Jensen LS. Microbial mineralization and assimilation of black carbon: Dependency on degree of thermal alteration. Org. Geochem.39(7),839–845 (2008).
  • Schmidt MWI, Skjemstad JO, Czimczik CI et al. Comparative analysis of black carbon in soils. Global Biogeochem. Cy.15(1),163–167 (2001).
  • Rocca PAD, Cerrella EG, Bonelli PR, Cukierman AL. Pyrolysis of hardwoods residues: on kinetics and chars characterization. Biomass Bioenergy16(1),79–88 (1999).
  • Chen B, Zhou D, Zhu L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol.42(14),5137–5143 (2008).
  • Karaosmanoglu F, Isigigur-Ergundenler A, Sever A. Biochar from the straw-stalk of rapeseed plant. Energy Fuels14(2),336–339 (2000).
  • Ozcimen D, Karaosmanoglu F. Production and characterization of bio-oil and biochar from rapeseed cake. Renew. Energ.29(5),779–787 (2004).
  • Encinar JM, Beltrán FJ, Bernalte A, Ramiro A, González JF. Pyrolysis of two agricultural residues: olive and grape bagasse. Influence of particle size and temperature. Biomass Bioenergy11(5),397–409 (1996).
  • Kawamoto K, Ishimaru K, Imamura Y. Reactivity of wood charcoal with ozone. Japan Wood Research Society51,66–72 (2005).
  • Shindo H. Elemental composition, humus composition, and decomposition in soils of charred grassland plants. Soil Sci. Plant Nutr.37,651–657 (1991).
  • Bridgwater AV, Meier D, Radlein D. An overview of fast pyrolysis of biomass. Org. Geochem.30(12),1479–1493 (1999).
  • Knicker H, Gonzalez-Vila FJ, Polvillo O, Gonzalez JA, Almendros G. Fire-induced transformation of C- and N-forms in different organic soil fractions from a Dystric Cambisol under a Mediterranean pine forest (Pinus pinaster). Soil Biol. Biochem.37(4),701–718 (2005).
  • Baldock JA, Smernik RJ. Chemical composition and bioavailability of thermally, altered Pinus resinosa (Red Pine) wood. Org. Geochem.33(9),1093–1109 (2002).
  • Knicker H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochem.85(1),91–118 (2007).
  • Villey M, Oberlin A, Combaz A. Influence of elemental composition on carbonization pyrolysis of sporopollenin and lignite as models of kerogens. Carbon17(1),77–86 (1979).
  • Oberlin A, Villey M, Combaz A. Influence of elemental composition on carbonization: pyrolysis of kerosene shale and kuckersite. Carbon18(5),347–353 (1980).
  • Robertson SD. Graphite formation from low temperature pyrolysis of methane over some transition metal surfaces. Nature221(5185),1044–1046 (1969).
  • Knicker H, Hilscher A, Gonzalez-Vila FJ, Almendros G. A new conceptual model for the structural properties of char produced during vegetation fires. Org. Geochem.39(8),935–939 (2008).
  • Hammes K, Schmidt MWI, Smernik RJ et al. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochem. Cy.21(3) (2007).
  • Schmidt MWI, Skjemstad JO, Gehrt E, Kogel-Knabner I. Charred organic carbon in German chernozemic soils. Eur. J. Soil Sci.50(2),351–365 (1999).
  • Skjemstad JO, Reicosky DC, Wilts AR, McGowan JA. Charcoal Carbon in U.S. agricultural soils. Soil Sci. Soc. Am. J.66(4),1249–1255 (2002).
  • Ponomarenko EV, Anderson DW. Importance of charred organic matter in Black Chernozem soils of Saskatchewan. Can. J. Soil Sci.81(3),285–297 (2001).
  • Gustafsson Ö, Gschwend PM. the flux of black carbon to surface sediments on the new england continental shelf. Geochim. Cosmochim. Acta62(3),465–472 (1998).
  • Haumaier L, Zech W. Black carbon – possible source of highly aromatic components of soil humic acids. Org. Geochem.23(3),191–196 (1995).
  • Krull ES, Swanston CW, Skjemstad JO, McGowan JA. Importance of charcoal in determining the age and chemistry of organic carbon in surface soils. J. Geophys. Res. Biogeosci.111(G4) (2006).
  • Ascough PL, Sturrock CJ, Bird MI. Investigation of growth responses in saprophytic fungi to charred biomass. Isot. Environ. Health Stud.46(1),64–77 (2010).
  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC. Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant Soil300,9–20 (2007).
  • Zackrisson O, Nilsson M-C, Wardle DA. Key ecological function of charcoal from wildfire in the boreal forest. Oikos77(1),10–19 (1996).
  • Focht U. The effect of smoke from charcoal kilns on soil respiration. Environ. Monit. and Assess.59(1),73–80 (1999).
  • Guillén MD, Manzanos MJ. Study of the volatile composition of an aqueous oak smoke preparation. Food Chem.79(3),283–292 (2002).
  • Asita AO, Matsui M, Nohmi T et al. Mutagenicity of wood smoke condensates in the Salmonella/microsome assay. Mutat. Res. Lett.264(1),7–14 (1991).
  • Asita AO, Campbell IA. Anti-microbial activity of smoke from different woods. Lett. Appl. Microbiol.10(2),93–95 (1990).
  • Spokas KA, Baker JM, Reicosky DC. Ethylene: potential key for biochar amendment impacts. Plant Soil333(1–2),443–452 (2010).
  • Clough TJ, Bertram JE, Ray JL et al. Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Sci. Soc. Am. J.74(3),852–860 (2010).
  • Potter MC. Bacteria as agents in the oxidation of amorphous carbon. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character80(539),239–259 (1908).
  • Shneour EA. Oxidation of graphitic carbon in certain soils. Science151(3713),991–992 (1966).
  • Fakoussa RM, Hofrichter M. Biotechnology and microbiology of coal degradation. Appl. Microbiol. Biotechnol.52(1),25–40 (1999).
  • Hölker U, Fakoussa RM, Höfer M. Growth substrates control the ability of Fusarium oxysporum to solubilize low-rank coal. Appl.Microbiol. Biotechnol.44(3),351–355 (1995).
  • Hofrichter M, Fritsche W. Depolymerization of low-rank coal by extracellular fungal enzyme systems. Appl. Microbiol. Biotechnol.46(3),220–225 (1996).
  • Hofrichter M, Bublitz F, Fritsche W. Fungal attack on coal: I. Modification of hard coal by fungi. Fuel Process. Tech.52(1–3),43–53 (1997).
  • Burford EP, Fomina M, Gadd GM. Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral. Mag.67(6),1127–1155 (2003).
  • Fomina M, Podgorsky VS, Olishevska SV et al. Fungal deterioration of barrier concrete used in nuclear waste disposal. Geomicrobiol. J.24(7),643 (2007).
  • Sand W. Microbial mechanisms of deterioration of inorganic substrates – a general mechanistic overview. Int. Biodeterior. Biodegradation40(2–4),183–190 (1997).
  • Carcaillet C. Are Holocene wood-charcoal fragments stratified in alpine and subalpine soils? Evidence from the Alps based on AMS 14C dates. Holocene11(2),231–242 (2001).
  • Willmann G, Fakoussa R. Extracellular oxidative enzymes of coal-attacking fungi. Fuel Process. Tech.52(1–3),27–41 (1997).
  • Spokas K, Reicosky D. Impacts of sixteen different biochars on soil greenhouse gas production. Ann. Environ. Sci.3,15 (2009).
  • Spokas KA, Koskinen WC, Baker JM, Reicosky DC. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere77(4),574–581 (2009).
  • Zimmerman AR. Abiotic and Microbial Oxidation of Laboratory-Produced Black Carbon (Biochar). Environ. Sci. Tech.44(4),1295–1301 (2010).
  • Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem.41(6),1301–1310 (2009).
  • Anderson JPE. Soil moisture and the rates of biodegradation of diallate and triallate. Soil Biol. Biochem.13(2),155–161 (1981).
  • Anderson JPE. Herbicide degradation in soil: influence of microbial biomass. Soil Biol. Biochem.16(5),483–489 (1984).
  • Wallenius K, Rita H, Simpanen S, Mikkonen A, Niemi RM. Sample storage for soil enzyme activity and bacterial community profiles. J. Microbiol. Methods81(1),48–55 (2010).
  • Allardice DJ. The processes involved in the adsorption of oxygen on brown coal char. Carbon3(2),215–218 (1965).
  • Allardice DJ. The adsorption of oxygen on brown coal char. Carbon4(2),255–262 (1966).
  • Fujitsu H, Mochida I, Verheyen TV, Perry GJ, Allardice DJ. The influence of modifications to the surface groups of brown coal chars on their flue gas cleaning ability. Fuel72(1),109–113 (1993).
  • Hamer U, Marschner B, Brodowski S, Amelung W. Interactive priming of black carbon and glucose mineralisation. Org. Geochem.35(7),823–830 (2004).
  • Nguyen BT, Lehmann J, Kinyangi J, Smernik R, Riha SJ, Engelhard MH. Long-term black carbon dynamics in cultivated soil. Biogeochem.89(3),295–308 (2008).
  • Middelburg JJ, Nieuwenhuize J, van Breugel P. Black carbon in marine sediments. Marine Chem.65(3–4),245–252 (1999).
  • Neff JC, Harden JW, Gleixner G. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Can. J. Forest Res.35(9),2178–2187 (2005).
  • Arenillas A, Smith KM, Drage TC, Snape CE. CO2 capture using some fly ash-derived carbon materials. Fuel84(17),2204–2210 (2005).
  • Harden JW, Neff JC, Sandberg DV et al. Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska, 1999. Global Biogeochem. Cy.18(3) (2004).
  • Bird MI, Moyo C, Veenendaal EM, Lloyd J, Frost P. Stability of elemental carbon in a savanna soil. Global Biogeochem. Cy.13(4),923–932 (1999).
  • Cheng CH, Lehmann J, Engelhard MH. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim. Cosmochim. Acta72,1598–1610 (2008).
  • Lee JW, Kidder M, Evans BR et al. Characterization of Biochars Produced from Cornstovers for Soil Amendment. Environ. Sci. Tech.44(20),7970–7974 (2010).
  • Brodowski S, Rodionov A, Haumaier L, Glaser B, Amelung W. Revised black carbon assessment using benzene polycarboxylic acids. Org. Geochem.36(9),1299–1310 (2005).
  • Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem.37(11),1477–1488 (2006).
  • Liang B, Lehmann J, Solomon D et al. Stability of biomass-derived black carbon in soils. Geochim. Cosmochim. Acta72(24),6069–6078 (2008).
  • Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC. Characterization of Biochar from Fast Pyrolysis and Gasification Systems. Environ. Progress Sustain. Energy28(3),386–396 (2009).
  • Keiluweit M, Nico PS, Johnson MG, Kleber M. Dynamic molecular structure of plant biomass-derived black carbon (Biochar). Environ. Sci. Tech.44(4),1247–1253 (2010).
  • Knicker H, Almendros G, Gonzalez-Vila FJ, Gonzalez-Perez JA, Polvillo O. Characteristic alterations of quantity and quality of soil organic matter caused by forest fires in continental Mediterranean ecosystems: a solid-state C-13 NMR study. Eur. J. Soil Sci.57(4),558–569 (2006).
  • Ascough PL, Bird MI, Scott AC et al. Charcoal reflectance measurements: implications for structural characterization and assessment of diagenetic alteration. J. Archaeol. Sci.37(7),1590–1599 (2010).
  • Fang XW, Chua T, Schmidt-Rohr K, Thompson ML. Quantitative C-13 NMR of whole and fractionated Iowa Mollisols for assessment of organic matter composition. Geochim. Cosmochim. Acta74(2),584–598 (2010).
  • Kaal J, Rumpel C. Can pyrolysis-GC/MS be used to estimate the degree of thermal alteration of black carbon?. Org. Geochem.40(12),1179–1187 (2009).
  • Hammes K, Torn MS, Lapenas AG, Schmidt MWI. Centennial black carbon turnover observed in a Russian steppe soil. Biogeosci.5(5),1339–1350 (2008).
  • Nocentini C, Certini G, Knicker H, Francioso O, Rumpel C. Nature and reactivity of charcoal produced and added to soil during wildfire are particle-size dependent. Organic Geochem.41(7),682–689 (2010).
  • Novak JM, Busscher WJ, Watts DW, Laird DA, Ahmedna MA, Niandou MAS. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma154(3–4),281–288 (2010).
  • Major J, Lehmann J, Rondon M, Goodale C. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Global Chang. Biol.16(4),1366–1379 (2010).
  • Ghetti P. DTG combustion behaviour of coal: Correlations with proximate and ultimate analysis data. Fuel65(5),636–639 (1986).
  • Merrick D. Mathematical models of the thermal decomposition of coal: 1. The evolution of volatile matter. Fuel62(5),534–539 (1983).
  • Gaur S, Reed TB. Thermal Data for Natural and Synthetic Fuels. Marcel Dekker, NY, USA (1998).
  • Nguyen BT, Lehmann J. Black carbon decomposition under varying water regimes. Org. Geochem.40(8),846–853 (2009).
  • Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem.41(6),1301–1310 (2009).
  • Harden JW, Trumbore SE, Stocks BJ et al. The role of fire in the boreal carbon budget. Global Chang. Biol.6,174–184 (2000).
  • Swift RS. Sequestration of carbon by soils. Soil Sci.166,858–871 (2001).
  • Forbes MS, Raison RJ, Skjemstad JO. Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci. Total Environ.370(1),190–206 (2006).
  • Kuzyakov Y, Subbotina I, Chen HQ, Bogomolova I, Xu XL. Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling. Soil Biol. Biochem.41(2),210–219 (2009).
  • Hilscher A, Heister K, Siewert C, Knicker H. Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Org. Geochem.40(3),332–342 (2009).
  • Williams PT, Nugranad N. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy25(6),493–513 (2000).
  • González JF, Ramiro A, González-García CM et al. Pyrolysis of Almond Shells. Energy Applications of Fractions. Ind. Eng. Chem. Res.44(9),3003–3012 (2005).
  • Williams PT, Besler S. The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew. Energ.7(3),233–250 (1996).
  • Insam H, Seewald M. Volatile organic compounds (VOCs) in soils. Biol. Fertil. Soils46(3),199–213 (2010).
  • Mara dos Santos Barbosa J, Ré-Poppi N, Santiago-Silva M. Polycyclic aromatic hydrocarbons from wood pyrolyis in charcoal production furnaces. Environ. Res.101(3),304–311 (2006).
  • Sipilä K, Kuoppala E, Fagernäs L, Oasmaa A. Characterization of biomass-based flash pyrolysis oils. Biomass Bioenergy14(2),103–113 (1998).
  • Zeng L, Qin C, Wang L, Li W. Volatile compounds formed from the pyrolysis of chitosan. Carbohydrate Polymers DOI:10.1016/j.carbpol.2010.10.007 (2010) (Epub ahead of print).
  • McGrath TE, Chan WG, Hajaligol MR. Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. J. Anal. Appl. Pyrol.66(1–2),51–70 (2003).
  • Deenik JL, McClellan T, Uehara G, Antal MJ, Campbell S. Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci. Soc. Am. J.74(4),1259–1270 (2010).
  • Gan J, Yates SR, Spencer WF, Yates MV. Automated headspace analysis of fumigants 1,3-dichloropropene and methyl isothiocyanate on charcoal sampling tubes. J. Chromatog. A684(1),121–131 (1994).
  • Kusch P, Knupp G. Headspace-SPME–GC–MS identification of volatile organic compounds released from expanded polystyrene. J. Polymers Environ.12(2),83–87 (2004).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.