216
Views
0
CrossRef citations to date
0
Altmetric
Review

Fungal Biofilm Composition and Opportunities in Drug Discovery

, &
Pages 1455-1468 | Received 19 Feb 2016, Accepted 27 May 2016, Published online: 03 Aug 2016

References

  • Hall-Stoodley L , CostertonJW, StoodleyP. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol.2 (2), 95–108 (2004).
  • Römling U , BalsalobreC. Biofilm infections, their resilience to therapy and innovative treatment strategies. J. Intern. Med.272 (6), 541–561 (2012).
  • Costerton JW , StewartPS, GreenbergEP. Bacterial biofilms: a common cause of persistent infections. Science284, 1318–1322 (1999).
  • Bjarnsholt T , AlhedeM, AlhedeMet al. The in vivo biofilm. Trends Microbiol.21 (9), 466–474 (2013).
  • Mathe L , Van DijckP. Recent insights into Candida albicans biofilm resistance mechanisms. Curr. Genetics59 (4), 251–264 (2013).
  • Douglas LJ . Candida biofilms and their role in infection. Trends Microbiol.11 (1), 30–36 (2003).
  • Mayer FL , WilsonD, HubeB. Candida albicans pathogenicity mechanisms. Virulence4 (2), 119–128 (2013).
  • Mowat E , WilliamsC, JonesB, McchleryS, RamageG. The characteristics of Aspergillus fumigatus mycetoma development: is this a biofilm?Med. Mycol.47 (Suppl. 1), S120–S126 (2009).
  • Fanning S , MitchellAP. Fungal biofilms. PLoS Pathogens8 (4), e1002585 (2012).
  • Kuhn DM , GannoumMA. Candida biofilms: antifungal resistance and emerging therapeutic options. Curt. Opin. Investig. Drugs5 (2), 186–197 (2004).
  • Balajee SA , HoubrakenJ, VerweijPEet al. Aspergillus species identification in the clinical setting. Stud. Mycol.59, 39–46 (2007).
  • Kaur S , SinghS. Biofilm formation by Aspergillus fumigatus. Med. Mycol.52 (1), 2–9 (2014).
  • Bakare N , RickertsV, BargonJ, Just-NublingG. Prevalence of Aspergillus fumigatus and other fungal species in the sputum of adult patients with cystic fibrosis. Mycoses46, 19–23 (2003).
  • Manavathu EK , VagerDL, VazquezJA. Development and antimicrobial susceptibility studies of in vitro monomicrobial and polymicrobial biofilm models with Aspergillus fumigatus and Pseudomonas aeruginosa. BMC Microbiol.14, 53–68 (2014).
  • Beauvais A , LoussertC, PrevostMC, VerstrepenK, LatgeJP. Characterization of a biofilm-like extracellular matrix in FLO1-expressing Saccharomyces cerevisiae cells. FEMS Yeast Res.9 (3), 411–419 (2009).
  • Al-Fattani MA , DouglasLJ. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J. Med. Microbiol.55 (Pt 8), 999–1008 (2006).
  • Kumamoto CA . Candida biofilms. Curr. Opin. Microbiol.5, 608–611 (2002).
  • Silva S , HenriquesM, MartinsA, OliveiraR, WilliamsD, AzeredoJ. Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Med. Mycol.47 (7), 681–689 (2009).
  • Flemming HC , WingenderJ. The biofilm matrix. Nat. Rev. Microbiol.8 (9), 623–633 (2010).
  • Flemming HC , NeuTR, WozniakDJ. The EPS matrix: the “house of biofilm cells”. J. Bacteriol.189 (22), 7945–7947 (2007).
  • Blankenship JR , MitchellAP. How to build a biofilm: a fungal perspective. Curr. Opin. Microbiol.9 (6), 588–594 (2006).
  • Colvin KM , GordonVD, MurakamiKet al. The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog.7 (1), e1001264 (2011).
  • Jennings LK , StorekKM, LedvinaHEet al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc. Natl Acad. Sci. USA112 (36), 11353–11358 (2015).
  • Donlan RM , CostertonJW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev.15 (2), 167–193 (2002).
  • Al-Fattani MA , DouglasLJ. Penetration of Candida biofilms by antifungal agents. Antimicrob. Agents Chemother.48 (9), 3291–3297 (2004).
  • Lewis K . Riddle of biofilm resistance. Antimicrob. Agents Chemother.45 (4), 999–1007 (2001).
  • Taff HT , NettJE, ZarnowskiRet al. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog.8 (8), e1002848 (2012).
  • Ramage G , RajendranR, SherryL, WilliamsC. Fungal biofilm resistance. Int. J. Microbiol.2012, e528521 (2012).
  • Mukherjee PK , ChandraJ. Candida biofilm resistance. Drug Resist. Updat.7 (4), 301–309 (2004).
  • Taff HT , MitchellKF, EdwardJA, AndesDR. Mechanisms of Candida biofilm drug resistance. Future Microbiol.8 (10), 1325–1337 (2013).
  • Bink A , KucharikovaS, NeirinckBet al. The nonsteroidal antiinflammatory drug diclofenac potentiates the in vivo activity of caspofungin against Candida albicans biofilms. J. Infect. Dis.206 (11), 1790–1797 (2012).
  • Chandra J , KuhnDM, MukherjeePK, HoyerLL, MccormickT, GhannoumMA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol.183 (18), 5385–5394 (2001).
  • Nett JE , SanchezH, CainMT, AndesDR. Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J. Infect. Dis.202 (1), 171–175 (2010).
  • Nett J , LincolnL, MarchilloKet al. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob. Agents Chemother.51 (2), 510–520 (2007).
  • Nett JE , SanchezH, CainMT, RossKM, AndesDR. Interface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation. Eukaryot. Cell10 (12), 1660–1669 (2011).
  • Sadovskaya I , VinogradovE, LiJ, HachaniA, KowalskaK, FillouxA. High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: the ndvB gene is involved in the production of highly glycerol-phosphorylated beta-(1,3)-glucans, which bind aminoglycosides. Glycobiology20 (7), 895–904 (2010).
  • Vediyappan G , RossignolT, D'enfertC. Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob. Agents Chemother.54 (5), 2096–2111 (2010).
  • Martins M , HenriquesM, Lopez-RibotJL, OliveiraR. Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses55 (1), 80–85 (2012).
  • Martins M , UppuluriP, ThomasDPet al. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia169 (5), 323–331 (2010).
  • Rajendran R , WilliamsC, LappinDF, MillingtonO, MartinsM, RamageG. Extracellular DNA release acts as an antifungal resistance mechanism in mature Aspergillus fumigatus biofilms. Eukaryot. Cell12 (3), 420–429 (2013).
  • Shopova I , BrunsS, ThywissenA, KniemeyerO, BrakhageAA, HillmannF. Extrinsicextracellular DNA leads to biofilm formation and colocalizes with matrixpolysaccharides in the human pathogenic fungus Aspergillus fumigatus.. Front. Microbiol.4 (2013). www.ncbi.nlm.nih.gov/pmc/articles/PMC3674311/.
  • Krappmann S , RamageG. Asticky situation: extracellular DNA shapes Aspergillus fumigatus biofilms. Front. Microbiol.4 (2013). www.ncbi.nlm.nih.gov/pmc/articles/PMC3695381/.
  • Mowat E , ButcherJ, LangS, WilliamsC, RamageG. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J. Med. Microbiol.56 (Pt 9), 1205–1212 (2007).
  • Mowat E , LangS, WilliamsC, McCullochE, JonesB, RamageG. Phase-dependent antifungal activity against Aspergillus fumigatus developing multicellular filamentous biofilms. J. Antimicrob. Chemother.62 (6), 1281–1284 (2008).
  • Seidler MJ , SalvenmoserS, MullerFM. Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells. Antimicrob. Agents Chemother.52 (11), 4130–4136 (2008).
  • Bugli F , PosteraroB, PapiMet al. In vitro interaction between alginate lyase and amphotericin B against Aspergillus fumigatus biofilm determined by different methods. Antimicrob. Agents Chemother.57 (3), 1275–1282 (2013).
  • Reichhardt C , FerreiraJA, JoubertLM, ClemonsKV, StevensDA, CegelskiL. Analysis of the Aspergillus fumigatus biofilm extracellular matrix by solid-state nuclear magnetic resonance spectroscopy. Eukaryot. Cell14, 1064–1072 (2015).
  • Hawser SP , BaillieGS, DouglasLJ. Production of extracellular matrix by Candida albicans biofilms. J. Med. Microbiol.47, 253–256 (1998).
  • Hoiby N , BjarnsholtT, GivskovM, MolinS, CiofuO. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents35 (4), 322–332 (2010).
  • Robbins N , CollinsC, MorhayimJ, CowenLE. Metabolic control of antifungal drug resistance. Fungal Genet. Biol.47 (2), 81–93 (2010).
  • Lewis K . Multidrug tolerance of biofilms and persister cells. Curr. Top. Microbiol. Immun.322, 107–131 (2008).
  • Ramage G . Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J. Antimicrob. Chemother.49 (6), 973–980 (2002).
  • Rajendra R , MowatE, McCullochEet al. Azole resistance of Aspergillus fumigatus biofilms is partly associated with efflux pump activity. Antimicrob. Agents Chemother.55 (5), 2092–2097 (2011).
  • Mukerjee PK , ChandraJ, KuhnDM, GhannoumMA. Mechanismof fluconazole resistance in Candida albicans biofilms: phase-specific role ofefflux pumps and membrane sterols. Infect. Immun.71 (8), 4333–4340 (2003).
  • Cegelski L , MarshallGR, EldridgeGR, HultgrenSJ. The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol.6 (1), 17–27 (2008).
  • Cegelski L , PinknerJS, HammerNDet al. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat. Chem. Biol.5 (12), 913–919 (2009).
  • Cui J , RenB, TongY, DaiH, ZhangL. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence6 (4), 362–371 (2015).
  • Ramage G , MowatE, JonesB, WilliamsC, Lopez-RibotJ. Our current understanding of fungal biofilms. Crit. Rev. Microbiol.35 (4), 340–355 (2009).
  • Sutherland I . Biofilm exopolysaccharides: a strong and sticky framework. Microbiology147, 3–9 (2001).
  • Sutherland IW . The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol.9, 222–227 (2001).
  • Cegelski L . Bottom-up and top-down solid-state NMR approaches for bacterial biofilm matrix composition. J. Magn. Reson.253, 91–97 (2015).
  • Reichhardt C , CegelskiL. Solid-state NMR for bacterial biofilms. Mol. Phys.112 (7), 887–894 (2014).
  • Beauvais A , SchmidtC, GuadagniniSet al. An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cell Microbiol.9 (6), 1588–1600 (2007).
  • Loussert C , SchmittC, PrevostMCet al. In vivo biofilm composition of Aspergillus fumigatus. Cell Microbiol.12 (3), 405–410 (2010).
  • Zarnowski R , WestlerWM, LacmbouhGAet al. Novel entries in a fungal biofilm matrix encyclopedia. mBio5 (4), e01333–e01314 (2014).
  • Muller FMC , SeidlerM, BeauvaisAet al. Aspergillus fumigatus biofilms in the clinical setting. Med. Mycol.49 (Suppl. 1), S96–S100 (2011).
  • Mukherjee PK , ZhouG, MunyonR, GhannoumMA. Candida biofilm: a well-designed protected environment. Med. Mycol.43 (3), 191–208 (2005).
  • Serra DO , RichterAM, KlauckG, MikaF, HenggeR. Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. mBio4 (2), e00103–e00113 (2013).
  • Serra DO , HenggeR. Stress responses go three dimensional – the spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ. Microbiol.16 (6), 1455–1471 (2014).
  • Martinez LR , MihuMR, TarMet al. Demonstration of antibiofilm and antifungal efficacy of chitosan against candidal biofilms, using an in vivo central venous catheter model. J. Infect. Dis.201 (9), 1436–1440 (2010).
  • Berk V , FongJC, DempseyGTet al. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science337 (6091), 236–239 (2012).
  • Kessler RJ , FanestilDD. Interference by lipids in the determination of protein using bicinchoninic acid. Anal. Biochem.159, 138–142 (1986).
  • Brown RE , JarvisKL, HylandKJ. Protein measurement using bicinchoninic acid: elimination of interfering substances. Anal. Biochem.180, 136–139 (1989).
  • Schoel B , WelzelM, KaufmannSHE. Quantification of protein in dilute and complex samples: modification of the bicinchoninic acid assay. J. Biochem. Biophys. Meth.30, 199–206 (1995).
  • Bruns S , SeidlerM, AlbrechtDet al. Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin. Proteomics10 (17), 3097–3107 (2010).
  • Gravelat FN , BeauvaisA, LiuHet al. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal beta-glucan from the immune system. PLoS Pathog.9 (8), e1003575 (2013).
  • Beauvais A , FontaineT, AimaniandaV, LatgeJP. Aspergillus cell wall and biofilm. Mycopathologia178 (5), 371–377 (2014).
  • Lee MJ , LiuH, BarkerBMet al. The fungal exopolysaccharide galactosaminogalactan mediates virulence by enhancing resistance to neutrophil extracellular traps. PLoS Pathog.11 (10), e1005187 (2015).
  • Beaussart A , El-Kirat-ChatelS, FontaineT, LatgeJP, DufreneYF. Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus. Nanoscale7 (36), 14996–15004 (2015).
  • Bamford NC , SnarrBD, GravelatFNet al. Sph3 is a glycoside hydrolase required for the biosynthesis of galactosaminogalactan in Aspergillus fumigatus. J. Biol. Chem.290 (46), 27438–27450 (2015).
  • Lee MJ , GellerAM, BamfordNCet al. Deacetylation of fungal exopolysaccharide mediates adhesion and biofilm formation. mBio7 (2), pii: e00252–16 (2016).
  • Mitchell KF , ZarnowskiR, SanchezHet al. Community participation in biofilm matrix assembly and function. Proc. Natl Acad. Sci. USA112 (13), 4092–4097 (2015).
  • Reichhardt C , FongJC, YildizF, CegelskiL. Characterization of the Vibrio cholerae extracellular matrix: a top-down solid-state NMR approach. BBA Biomembr.1848 (1 Pt B), 378–383 (2015).
  • Yildiz F , FongJ, SadovskayaI, GrardT, VinogradovE. Structural characterization of the extracellular polysaccharide from Vibrio cholerae O1 El-Torr. PLoS ONE9 (1), e86751 (2014).
  • Hall MB . Efficacy of reducing sugar and phenol–sulfuric acid assays for analysis of soluble carbohydrates in feedstuffs. Anim. Feed Sci. Technol.185 (1), 94–100 (2013).
  • Mccrate OA , ZhouX, ReichhardtC, CegelskiL. Sum of the parts: composition and architecture of the bacterial extracellular matrix. J. Mol. Biol.425 (22), 4286–4294 (2013).
  • Cegelski L , SteuberD, MehtaAK, KulpDW, AxelsenPH, SchaeferJ. Conformational and quantitative characterization of oritavancin–peptidoglycan complexes in whole cells of Staphylococcus aureus by in vivo13C and 15N labeling. J. Mol. Biol.357 (4), 1253–1262 (2006).
  • Zhou X , CegelskiL. Nutrient-dependent structural changes in S. aureus peptidoglycan revealed by solid-state NMR spectroscopy. Biochemistry51 (41), 8143–8153 (2012).
  • Toke O , CegelskiL. REDOR applications in biology: an overview. In : Solid State NMR of Biopolymers. McDermottAE, PolenovaT ( Ed.). John Wiley and Sons, West Sussex, UK, 473–490 (2010).
  • Kim SJ , CegelskiL, PreobrazhenskayaM, SchaeferJ. Structures of Staphylococcus cell-wall complexes with vancomycin, eremomycin, and chloroeremomcyin derivatives by 13C{19F} and 15N{19F} rotational-echo double resonance. Biochemistry45, 5235–5250 (2006).
  • Nygaard R , RomaniukJA, RiceDM, CegelskiL. Spectral snapshots of bacterial cell-wall composition and the influence of antibiotics by whole-cell NMR. Biophys. J.108 (6), 1380–1389 (2015).
  • Cegelski L , SchaeferJ. Glycine metabolism in intact leaves by in vivo13C and 15N labeling. J. Biol. Chem.280 (47), 39238–39245 (2005).
  • Schaefer J , StejskalEO. Carbon-13 nuclear magnetic resonance of polymers at the magic-angle. J. Am. Chem. Soc.98 (4), 1031–1032 (1976).
  • Schaefer J , StejskalEO, BuchdahlR. High-resolution carbon-13 nuclear magnetic resonance study of some solid, glassy polymers. Macromolecules8 (3), 291–296 (1975).
  • Gullion T , SchaeferJ. Rotational-echo double-resonance NMR. J. Magn. Reson.81 (1), 196–200 (1989).
  • Cegelski L , KimSJ, HingAWet al. Rotational-echo double resonance characterization of the effects of vancomycin on cell wall synthesis in Staphylococcus auerus. Biochemistry41, 13053–13058 (2002).
  • Wang T , ParkYB, CosgroveDJ, HongM. Cellulose-pectin spatial contacts are inherent to never-dried Arabidopsis primary cell walls: evidence from solid-state nuclear magnetic resonance. Plant Physiol.168 (3), 871–884 (2015).
  • Dick-Perez M , WangT, SalazarA, ZabotinaOA, HongM. Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls. Magn. Reson. Chem.50 (8), 539–550 (2012).
  • Wang T , ZabotinaO, HongM. Pectin–cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance. Biochemistry51 (49), 9846–9856 (2012).
  • Dick-Perez M , ZhangY, HayesJ, SalazarA, ZabotinaOA, HongM. Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry50 (6), 989–1000 (2011).
  • Matsuoka S , IkeuchiH, MatsumoriN, MurataM. Dominant formation of a single-length channel by amphotericin B in dimyristoylphosphatidylcholine membrane evidenced by 13C-31P rotational echo double resonance. Biochemistry44 (2), 704–710 (2005).
  • Anderson TM , ClayMC, CioffiAGet al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat. Chem. Biol.10 (5), 400–406 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.