114
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Activity of Caffeic Acid Phenethyl Ester in Caenorhabditis Elegans

, , , , , , , , & show all
Pages 2033-2046 | Received 21 Apr 2016, Accepted 18 Aug 2016, Published online: 14 Oct 2016

References

  • Banskota AH , TezukaY, KadotaS. Recent progress in pharmacological research of propolis. Phytother. Res.15, 561–571 (2001).
  • Sforcin JM . Propolis and the immune system: a review. J. Ethnopharmacol.113, 1–14 (2007).
  • Ansorge S , ReinholdD, LendeckelU. Propolis and some of its constituents down-regulate DNA synthesis and inflammatory cytokine production but induce TGF-beta1 production of human immune cells. Z. Naturforsch. C58, 580–589 (2003).
  • Russo A , LongoR, VanellaA. Antioxidant activity of propolis: role of caffeic acid phenethyl ester and galangin. Fitoterapia73 (Suppl. 1), S21–S29 (2002).
  • Miorin P , LevyNJr, CustodioA, BretzW, MarcucciM. Antibacterial activity of honey and propolis from Apis mellifera and Tetragonisca angustula against Staphylococcus aureus. J. Appl. Microbiol.95, 913–920 (2003).
  • Grunberger D , BanerjeeR, EisingerKet al. Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis. Experientia44, 230–232 (1988).
  • Breger J , FuchsBB, AperisG, MoyTI, AusubelFM, MylonakisE. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog.3, e18 (2007).
  • Natarajan K , SinghS, BurkeTJr, GrunbergerD, AggarwalB. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc. Natl Acad. Sci. USA93, 9090–9095 (1996).
  • Marquez N , SanchoR, MachoA, CalzadoMA, FiebichBL, MunozE. Caffeic acid phenethyl ester inhibits T-cell activation by targeting both nuclear factor of activated T-cells and NF-κB transcription factors. J. Pharmacol. Exp. Ther.308, 993–1001 (2004).
  • Wang LC , LinYL, LiangYCet al. The effect of caffeic acid phenethyl ester on the functions of human monocyte-derived dendritic cells. BMC Immunol.10, 39 (2009).
  • Park JH , LeeJK, KimHSet al. Immunomodulatory effect of caffeic acid phenethyl ester in Balb/c mice. Int. Immunopharmacol.4, 429–436 (2004).
  • Irazoqui JE , UrbachJM, AusubelFM. Evolution of host innate defense: insights from Caenorhabditis elegans and primitive invertebrates. Nat. Rev. Immunol.10, 47–58 (2010).
  • Pukkila-Worley R , AusubelFM, MylonakisE. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses. PLoS Pathog.7, e1002074 (2011).
  • Means TK , MylonakisE, TampakakisEet al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J. Exp. Med.206, 637–653 (2009).
  • Pfaller MA , DiekemaDJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev.20, 133–163 (2007).
  • Andes D , SafdarN, BaddleyJet al. Impact of treatment strategy on outcomes inpatients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin. Infect. Dis.54, 1110–1122 (2012).
  • Magill S , EdwardsJ, BambergWet al. Multistate point-prevalence survey of health care-associated infections. N. Engl. J. Med.370, 1198–1208 (2014).
  • Okoli I , ColemanJJ, TampakakisEet al. Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay. PLoS ONE4, e7025 (2009).
  • Coleman JJ , OkoliI, TegosGPet al. Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem. Biol.5, 321–332 (2010).
  • Coleman JJ , GhoshS, OkoliI, MylonakisE. Antifungal activity of microbial secondary metabolites. PLoS ONE6, e25321 (2011).
  • Brenner S . The genetics of Caenorhabditis elegans. Genetics77 (1), 71–94 (1974).
  • Muhammed M , ColemanJJ, MylonakisE. Caenorhabditis elegans: a nematode infection model for pathogenic fungi. Method Mol. Biol.845, 447–454 (2012).
  • Livak KJ , SchmittgenTD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods25, 402–408 (2001).
  • National Committee for Clinical Laboratory Standards . Reference Method for Broth Dilution Susceptibility Testing of Yeasts. Tentative Standard M27-A. PA, USA (1995).
  • Celli N , DraganiLK, MurzilliS, PaglianiT, PoggiA. In vitro and in vivo stability of caffeic acid phenethyl ester, a bioactive compound of propolis. J. Agric. Food Chem.55, 3398–3407 (2007).
  • Demestre M , MesserliS, CelliNet al. CAPE (caffeic acid phenethyl ester)-based propolis extract (Bio 30) suppresses the growth of neurofibromatosis (NF) tumor xenografts in mice. Phytother. Res.23, 226–230 (2009).
  • Xu JW , IkedaK, KobayakawaAet al. Downregulation of Rac1 activation by caffeic acid in aortic smooth muscle cells. Life Sci.76, 2861–2872 (2005).
  • Zhang S , HanJ, SellsMAet al. Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J. Biol. Chem.270, 23934–23936 (1995).
  • Mainiero F , SorianiA, StrippoliRet al. RAC1/p38 MAPK signaling pathway controls beta1 integrin-induced interleukin-8 production in human natural killer cells. Immunity12, 7–16 (2000).
  • Frost JA , SwantekJL, StippecS, YinML, GaynorR, CobbMH. Stimulation of NF kappaB activity by multiple signaling pathways requires PAK1. J. Biol. Chem.275, 19693–19699 (2000).
  • Kumar R , GururajA, BarnesC. p21-activated kinases in cancer. Nat. Rev. Cancer6, 459–471 (2006).
  • Mylonakis E , AusubelFM, PerfectJR, HeitmanJ, CalderwoodSB. Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc. Natl Acad. Sci. USA99, 15675–15680 (2002).
  • Muhammed M , FuchsBB, WuMP, BregerJ, ColemanJJ, MylonakisE. The role of mycelium production and a MAPK-mediated immune response in the C. elegans-Fusarium moel system. Med. Mycol.50, 488–496 (2012).
  • Zarubin T , HanJ. Activation and signaling of the p38 MAP kinase pathway. Cell Res.15, 11–18 (2005).
  • Troemel E , ChuS, ReinkeV, LeeS, AusubelF, KimD. p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet.10, e183 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.