61
Views
0
CrossRef citations to date
0
Altmetric
Review

Exploiting Computationally Derived Out-Of-The-Box Protein Conformations for Drug Design

&
Pages 1887-1897 | Received 12 May 2016, Accepted 06 Jul 2016, Published online: 15 Sep 2016

References

  • Wei G , XiW, NussinovR, MaB. Protein ensembles: how does nature harness thermodynamic fluctuations for life? The diverse functional roles of conformational ensembles in the cell. Chem. Rev.116 (11), 6516–6551 (2016).
  • Boehr DD , NussinovR, WrightPE. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol.5 (11), 789–796 (2009).
  • Granier S , KobilkaB. A new era of GPCR structural and chemical biology. Nat. Chem. Biol.8 (8), 670–673 (2012).
  • Nussinov R , TsaiC-J. Allostery without a conformational change? Revisiting the paradigm. Curr. Opin. Struct. Biol.30, 17–24 (2015).
  • Noble MEM , EndicottJA, JohnsonLN. Protein kinase inhibitors: insights into drug design from structure. Science303 (5665), 1800–1805 (2004).
  • Endicott JA , NobleMEM. Structural characterization of the cyclin-dependent protein kinase family. Biochem. Soc. Trans.41 (4), 1008–1016 (2013).
  • Nussinov R , TsaiC-J. Allostery in disease and in drug discovery. Cell153 (2), 293–305 (2013).
  • Falchi F , CaporuscioF, RecanatiniM. Structure-based design of small-molecule protein–protein interaction modulators: the story so far. Future Med. Chem.6 (3), 343–357 (2014).
  • Cheng T , LiQ, ZhouZ, WangY, BryantSH. Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J.14 (1), 133–141 (2012).
  • Lionta E , SpyrouG, VassilatisDK, CourniaZ. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr. Top. Med. Chem.14 (16), 1923–1938 (2014).
  • Lounnas V , RitschelT, KelderJ, McGuireR, BywaterRP, FoloppeN. Current progress in structure-based rational drug design marks a new mindset in drug discovery. Comput. Struct. Biotech. J.5 (6), 1–14 (2013).
  • Stumpfe D , RipphausenP, BajorathJ. Virtual compound screening in drug discovery. Future Med. Chem.4 (5), 593–602 (2012).
  • Sgobba M , CaporuscioF, AnighoroA, PortioliC, RastelliG. Application of a post-docking procedure based on MM-PBSA and MM-GBSA on single and multiple protein conformations. Eur. J. Med. Chem.58, 431–440 (2012).
  • Erickson JA , JalaieM, RobertsonDH, LewisRA, ViethM. Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy. J. Med. Chem.47 (1), 45–55 (2004).
  • RCSB . www.rcsb.org.
  • Sinko W , LindertS, McCammonJA. Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design. Chem. Biol. Drug Des.81 (1), 41–49 (2013).
  • Abrams C , BussiG. Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy16 (1), 163–199 (2013).
  • Schlick T . Molecular dynamics-based approaches for enhanced sampling of long-time, large-scale conformational changes in biomolecules. F1000 Biol. Rep.1, 51 (2009).
  • Adcock SA , McCammonJA. Molecular dynamics: survey of methods for simulating the activity of proteins. Chem. Rev.106 (5), 1589–1615 (2006).
  • Halgren T . New method for fast and accurate binding-site identification and analysis. Chem. Biol. Drug Des.69 (2), 146–148 (2007).
  • Weisel M , ProschakE, SchneiderG. PocketPicker: analysis of ligand binding-sites with shape descriptors. Chem. Cent. J.1, 7 (2007).
  • Kalidas Y , ChandraN. PocketDepth: a new depth based algorithm for identification of ligand binding sites in proteins. J. Struct. Biol.161 (1), 31–42 (2008).
  • Le Guilloux V , SchmidtkeP, TufferyP. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics10, 168 (2009).
  • Tripathi A , KelloggGE. A novel and efficient tool for locating and characterizing protein cavities and binding sites. Proteins78 (4), 825–842 (2010).
  • Tan KP , VaradarajanR, MadhusudhanMS. DEPTH: a web server to compute depth and predict small-molecule binding cavities in proteins. Nucleic Acids Res.39, W242–W248 (2011).
  • Schmidtke P , Bidon-ChanalA, LuqueFJ, BarrilX. MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics27 (23), 3276–3285 (2011).
  • Laine E , GoncalvesC, KarstJCet al. Use of allostery to identify inhibitors of calmodulin-induced activation of Bacillus anthracis edema factor. Proc. Natl Acad. Sci. USA107 (25), 11277–11282 (2010).
  • Laine E , MartínezL, LadantD, MalliavinT, BlondelA. Molecular motions as a drug target: mechanistic simulations of anthrax toxin edema factor function led to the discovery of novel allosteric inhibitors. Toxins (Basel)4 (8), 580–604 (2012).
  • Zhao H , HuangD, CaflischA. Discovery of tyrosine kinase inhibitors by docking into an inactive kinase conformation generated by molecular dynamics. ChemMedChem7 (11), 1983–1990 (2012).
  • Zhao H , CaflischA. Discovery of ZAP70 inhibitors by high-throughput docking into a conformation of its kinase domain generated by molecular dynamics. Bioorg. Med. Chem. Lett.23 (20), 5721–5726 (2013).
  • Morris GM , HueyR, LindstromWet al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem.30 (16), 2785–2791 (2009).
  • Irwin JJ , SterlingT, MysingerMM, BolstadES, ColemanRG. ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model.52 (7), 1757–1768 (2012).
  • Lin Y-S , BowmanGR, BeauchampKA, PandeVS. Investigating how peptide length and a pathogenic mutation modify the structural ensemble of amyloid beta monomer. Biophys. J.102 (2), 315–324 (2012).
  • Xu Y , ShenJ, LuoXet al. Conformational transition of amyloid beta-peptide. Proc. Natl Acad. Sci. USA102 (15), 5403–5407 (2005).
  • Sgourakis NG , Merced-SerranoM, BoutsidisCet al. Atomic-level characterization of the ensemble of the Aβ(1–42) monomer in water using unbiased molecular dynamics simulations and spectral algorithms. J. Mol. Biol.405 (2), 570–583 (2011).
  • Wang Y , LiL, ChenT, ChenW, XuY. Microsecond molecular dynamics simulation of Aβ42 and identification of a novel dual inhibitor of Aβ42 aggregation and BACE1 activity. Acta Pharmacol. Sin.34 (9), 1243–1250 (2013).
  • Yang C , LiJ, LiY, ZhuX. The effect of solvents on the conformations of amyloid β-peptide (1–42) studied by molecular dynamics simulation. J. Mol. Struct. Theochem.895 (1), 1–8 (2009).
  • Tran L , Ha-DuongT. Exploring the Alzheimer amyloid-β peptide conformational ensemble: a review of molecular dynamics approaches. Peptides69, 86–91 (2015).
  • Martí-Solano M , SchmidtD, KolbP, SelentJ. Drugging specific conformational states of GPCRs: challenges and opportunities for computational chemistry. Drug Discov. Today21 (4), 625–631 (2016).
  • Okram B , NagleA, AdriánFJet al. A general strategy for creating “inactive-conformation” abl inhibitors. Chem. Biol.13 (7), 779–786 (2006).
  • Geppetti P , VeldhuisNA, LieuT, BunnettNW. G protein-coupled receptors: dynamic machines for signaling pain and itch. Neuron88 (4), 635–649 (2015).
  • Katritch V , CherezovV, StevensRC. Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol.53, 531–556 (2013).
  • Kohlhoff KJ , ShuklaD, LawrenzMet al. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nat. Chem.6 (1), 15–21 (2014).
  • Shukla D , LawrenzM, PandeVS. Elucidating ligand-modulated conformational landscape of GPCRs using cloud-computing approaches. Meth. Enzymol.557, 551–572 (2015).
  • Bowman GR , GeisslerPL. Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Proc. Natl Acad. Sci. USA109 (29), 11681–11686 (2012).
  • Bowman GR , BolinER, HartKM, MaguireBC, MarquseeS. Discovery of multiple hidden allosteric sites by combining Markov state models and experiments. Proc. Natl Acad. Sci. USA112 (9), 2734–2739 (2015).
  • Shukla D , MengY, RouxB, PandeVS. Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nat. Commun.5, 3397 (2014).
  • Betzi S , AlamR, MartinMet al. Discovery of a potential allosteric ligand binding site in CDK2. ACS Chem. Biol.6 (5), 492–501 (2011).
  • Palmieri L , RastelliG. αC helix displacement as a general approach for allosteric modulation of protein kinases. Drug Discov. Today18 (7), 407–414 (2013).
  • Yang S , BanavaliNK, RouxB. Mapping the conformational transition in Src activation by cumulating the information from multiple molecular dynamics trajectories. Proc. Natl Acad. Sci. USA106 (10), 3776–3781 (2009).
  • Rastelli G , AnighoroA, ChripkovaM, CarrassaL, BrogginiM. Structure-based discovery of the first allosteric inhibitors of cyclin-dependent kinase 2. Cell Cycle13 (14), 2296–2305 (2014).
  • Pisani P , CaporuscioF, CarlinoL, RastelliG. Molecular dynamics simulations and classical multidimensional scaling unveil new metastable states in the conformational landscape of CDK2. PLoS ONE11 (4), e0154066 (2016).
  • Atzori A , BruceNJ, BuruscoKK, WroblowskiB, BonnetP, BryceRA. Exploring protein kinase conformation using swarm-enhanced sampling molecular dynamics. J. Chem. Inf. Model.54 (10), 2764–2775 (2014).
  • Cavasotto CN , PhatakSS. Homology modeling in drug discovery: current trends and applications. Drug Discov. Today14 (13), 676–683 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.