424
Views
0
CrossRef citations to date
0
Altmetric
Review

Liposomal Drug Delivery Systems for Targeted Cancer Therapy: Is Active Targeting the Best Choice?

&
Pages 2091-2112 | Received 30 Jun 2016, Accepted 12 Oct 2016, Published online: 24 Oct 2016

References

  • Siegel RL , MillerKD, JemalA. Cancer statistics, 2016. CA Cancer J. Clin.66 (1), 7–30 (2016).
  • Harding MC , SloanCD, MerrillRM, HardingTM, ThackerBJ, ThackerEL. Abstract MP67: transition from cardiovascular disease to cancer as the leading cause of death in US states, 1999–2013. Circulation133 (Suppl. 1), AMP67–AMP67 (2016).
  • Pérez-Herrero E , Fernández-MedardeA. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm.93, 52–79 (2015).
  • Bertrand N , LerouxJ-C. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J. Control. Release161 (2), 152–163 (2012).
  • Jain RK , StylianopoulosT. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol.7 (11), 653–664 (2010).
  • Hrkach J , Von HoffD, AliMMet al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med.4 (128), 128ra139–128ra139 (2012).
  • Allen TM , CullisPR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev.65 (1), 36–48 (2013).
  • Patil YP , JadhavS. Novel methods for liposome preparation. Chem. Phys. Lipids177, 8–18 (2014).
  • Chang H-I , YehM-K. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int. J. Nanomed.7, 49 (2012).
  • Pattni BS , ChupinVV, TorchilinVP. New developments in liposomal drug delivery. Chem. Rev.115 (19), 10938–10966 (2015).
  • Alexis F , PridgenE, MolnarLK, FarokhzadOC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm.5 (4), 505–515 (2008).
  • Lian T , HoRJ. Trends and developments in liposome drug delivery systems. J. Pharm. Sci.90 (6), 667–680 (2001).
  • Hamann PR , HinmanLM, HollanderIet al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem.13 (1), 47–58 (2002).
  • Marcucci F , LefoulonF. Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Drug Discov. Today9 (5), 219–228 (2004).
  • Çağdaş M , SezerAD, BucakS. Liposomes as potential drug carrier systems for drug delivery. Application of Nanotechnology in Drug Delivery. In : SezerAD ( Ed.). Intech, Rijeka, Croatia (2014).
  • Matsumura Y , MaedaH. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res.46 (12 Part 1), 6387–6392 (1986).
  • Fang J , NakamuraH, MaedaH. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev.63 (3), 136–151 (2011).
  • Gabizon A , GorenD, HorowitzAT, TzemachD, LossosA, SiegalT. Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Adv. Drug Deliv. Rev.24 (2), 337–344 (1997).
  • Torchilin V . Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev.63 (3), 131–135 (2011).
  • Nagamitsu A , GreishK, MaedaH. Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug SMANCS: cases of advanced solid tumors. Jpn J. Clin. Oncol.39 (11), 756–766 (2009).
  • Chattopadhyay N , FongeH, CaiZet al. Role of antibody-mediated tumor targeting and route of administration in nanoparticle tumor accumulation in vivo. Mol. Pharm.9 (8), 2168–2179 (2012).
  • Noble GT , StefanickJF, AshleyJD, KiziltepeT, BilgicerB. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol.32 (1), 32–45 (2014).
  • Maruyama K . Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv. Drug Deliv. Rev.63 (3), 161–169 (2011).
  • Owens DE , PeppasNA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm.307 (1), 93–102 (2006).
  • Fan Y , ZhangQ. Development of liposomal formulations: from concept to clinical investigations. Asian J. Pharm. Sci.8 (2), 81–87 (2013).
  • Dawidczyk CM , KimC, ParkJHet al. State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J. Control. Release187, 133–144 (2014).
  • Drummond DC , MeyerO, HongK, KirpotinDB, PapahadjopoulosD. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev.51 (4), 691–744 (1999).
  • Litzinger DC , BuitingAM, Van RooijenN, HuangL. Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly (ethylene glycol)-containing liposomes. Biochim. Biophys. Acta1190 (1), 99–107 (1994).
  • Akbarzadeh A , Rezaei-SadabadyR, DavaranSet al. Liposome: classification, preparation, and applications. Nanoscale Res. Lett.8 (1), 102 (2013).
  • Cuomo F , MoscaM, MurgiaS, CeglieA, LopezF. Oligonucleotides and polynucleotides condensation onto liposome surface: effects of the base and of the nucleotide length. Colloids Surf. B Biointerfaces104, 239–244 (2013).
  • Miller CR , BondurantB, McleanSD, McgovernKA, O'brienDF. Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry37 (37), 12875–12883 (1998).
  • Levchenko TS , RammohanR, LukyanovAN, WhitemanKR, TorchilinVP. Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int. J. Pharm.240 (1), 95–102 (2002).
  • Lasic D , MartinF, GabizonA, HuangS, PapahadjopoulosD. Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim. Biophys. Acta1070 (1), 187–192 (1991).
  • Tirosh O , BarenholzY, KatzhendlerJ, PrievA. Hydration of polyethylene glycol-grafted liposomes. Biophys. J.74 (3), 1371–1379 (1998).
  • Tan C , ZhangY, AbbasSet al. Biopolymer-lipid bilayer interaction modulates the physical properties of liposomes: mechanism and structure. J. Agric. Food Chem.63 (32), 7277–7285 (2015).
  • Sinico C , ManconiM, PeppiM, LaiF, ValentiD, FaddaAM. Liposomes as carriers for dermal delivery of tretinoin: in vitro evaluation of drug permeation and vesicle-skin interaction. J. Control. Release103 (1), 123–136 (2005).
  • Coderch L , FonollosaJ, De PeraM, EstelrichJ, De La MazaA, ParraJ. Influence of cholesterol on liposome fluidity by EPR: relationship with percutaneous absorption. J. Control. Release68 (1), 85–95 (2000).
  • Alam MI , PagetT, ElkordyAA. Formulation and advantages of furazolidone in liposomal drug delivery systems. Eur. J. Pharm. Sci.84, 139–145 (2016).
  • Gabizon A , PriceDC, HubertyJ, BresalierRS, PapahadjopoulosD. Effect of liposome composition and other factors on the targeting of liposomes to experimental tumors: biodistribution and imaging studies. Cancer Res.50 (19), 6371–6378 (1990).
  • Lee C-M , ChoiY, HuhEJet al. Polyethylene glycol (PEG) modified 99mTc-HMPAO-liposome for improving blood circulation and biodistribution: the effect of the extent of PEGylation. Cancer Biother. Radiopharm.20 (6), 620–628 (2005).
  • Oussoren C , ZuidemaJ, CrommelinD, StormG. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection.: II. Influence of liposomal size, lipid composition and lipid dose. Biochim. Biophys. Acta1328 (2), 261–272 (1997).
  • Allen T , HansenC, GuoL. Subcutaneous administration of liposomes: a comparison with the intravenous and intraperitoneal routes of injection. Biochim. Biophys. Acta1150 (1), 9–16 (1993).
  • Lu F , WuSH, HungY, MouCY. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small5 (12), 1408–1413 (2009).
  • Lee KD , NirS, PapahadjopoulosD. Quantitative analysis of liposome-cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes. Biochemistry32 (3), 889–899 (1993).
  • He C , HuY, YinL, TangC, YinC. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials31 (13), 3657–3666 (2010).
  • Andresen TL , JensenSS, J⊘rgensenK. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog. Lipid Res.44 (1), 68–97 (2005).
  • Ishida T , KirchmeierM, MoaseE, ZalipskyS, AllenT. Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochim. Biophys. Acta1515 (2), 144–158 (2001).
  • Connor J , YatvinMB, HuangL. pH-sensitive liposomes: acid-induced liposome fusion. Proc. Natl Acad. Sci. USA81 (6), 1715–1718 (1984).
  • Drummond DC , ZignaniM, LerouxJ-C. Current status of pH-sensitive liposomes in drug delivery. Prog. Lipid Res.39 (5), 409–460 (2000).
  • Luo D , CarterKA, RaziAet al. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials75, 193–202 (2016).
  • Morgan C , YianniY, SandhuS, MitchellA. Liposome fusion and lipid exchange on ultraviolet irradiation of liposomes containing a photochromic phospholipid. Photochem. Photobiol.62 (1), 24–29 (1995).
  • Yatvin MB , WeinsteinJN, DennisWH, BlumenthalR. Design of liposomes for enhanced local release of drugs by hyperthermia. Science202 (4374), 1290–1293 (1978).
  • Needham D , DewhirstMW. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv. Drug Deliv. Rev.53 (3), 285–305 (2001).
  • Gaber MH , HongK, HuangSK, PapahadjopoulosD. Thermosensitive sterically stabilized liposomes: formulation and in vitro studies on mechanism of doxorubicin release by bovine serum and human plasma. Pharm. Res.12 (10), 1407–1416 (1995).
  • Lamparski H , LimanU, BarryJAet al. Photoinduced destabilization of liposomes. Biochemistry31 (3), 685–694 (1992).
  • Kirpotin D , HongK, MullahN, PapahadjopoulosD, ZalipskyS. Liposomes with detachable polymer coating: destabilization and fusion of dioleoylphosphatidylethanolamine vesicles triggered by cleavage of surface-grafted poly (ethylene glycol). FEBS Lett.388 (2), 115–118 (1996).
  • Saito G , SwansonJA, LeeK-D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv. Drug Deliv. Rev.55 (2), 199–215 (2003).
  • Duzgunes N , StraubingerR, BaldwinP, PapahadjopoulosD, WilschutJ, HoekstraD. pH-Sensitive Liposomes: Introduction of Foreign Substances into Cells. Marcel Dekker, NY, USA, 713–730 (1991).
  • Cullis PT , KruijffBD. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta559 (4), 399–420 (1979).
  • Simões S , MoreiraJN, FonsecaC, DüzgüneşN, De LimaMCP. On the formulation of pH-sensitive liposomes with long circulation times. Adv. Drug Deliv. Rev.56 (7), 947–965 (2004).
  • Sudimack JJ , GuoW, TjarksW, LeeRJ. A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochim. Biophys. Acta1564 (1), 31–37 (2002).
  • Subbarao NK , ParenteRA, SzokaFCJr, NadasdiL, PongraczK. The pH-dependent bilayer destabilization by an amphipathic peptide. Biochemistry26 (11), 2964–2972 (1987).
  • Legendre J-Y , SzokaFCJr. Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm. Res.9 (10), 1235–1242 (1992).
  • Ohkuma S , PooleB. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl Acad. Sci. USA75 (7), 3327–3331 (1978).
  • Fomina N , SankaranarayananJ, AlmutairiA. Photochemical mechanisms of light-triggered release from nanocarriers. Adv. Drug Deliv. Rev.64 (11), 1005–1020 (2012).
  • Bisby RH , MeadC, MorganCG. Active uptake of drugs into photosensitive liposomes and rapid release on UV photolysis. Photochem. Photobiol.72 (1), 57–61 (2000).
  • Kano K , TanakaY, OgawaT, ShimomuraM, OkahataY, KunitakeT. Photoresponsive membranes. Regulation of membrane properties by photoreversible cis-trans isomerization of azobenzenes. Chem. Lett.9 (4), 421–424 (1980).
  • Regen SL , SinghA, OehmeG, SinghM. Polymerized phosphatidyl choline vesicles. Stabilized and controllable time-release carriers. Biochem. Biophys. Res. Commun.101 (1), 131–136 (1981).
  • Yavlovich A , SinghA, BlumenthalR, PuriA. A novel class of photo-triggerable liposomes containing DPPC: DC 8, 9 PC as vehicles for delivery of doxorubcin to cells. Biochim. Biophys. Acta1808 (1), 117–126 (2011).
  • Kadri R , MessaoudGB, TamayolAet al. Preparation and characterization of nanofunctionalized alginate/methacrylated gelatin hybrid hydrogels. RSC Adv.6 (33), 27879–27884 (2016).
  • Anderson VC , ThompsonDH. Triggered release of hydrophilic agents from plasmologen liposomes using visible light or acid. Biochim. Biophys. Acta1109 (1), 33–42 (1992).
  • Thompson DH , GerasimovOV, WheelerJJ, RuiY, AndersonVC. Triggerable plasmalogen liposomes: improvement of system efficiency. Biochim. Biophys. Acta1279 (1), 25–34 (1996).
  • Girotti AW . Photodynamic lipid peroxidation in biological systems. Photochem. Photobiol.51 (4), 497–509 (1990).
  • Weissleder R . A clearer vision for in vivo imaging. Nat. Biotechnol.19 (4), 316–317 (2001).
  • Prevo BG , EsakoffSA, MikhailovskyA, ZasadzinskiJA. Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation. Small4 (8), 1183–1195 (2008).
  • Pashkovskaya A , KotovaE, ZorluYet al. Light-triggered liposomal release: membrane permeabilization by photodynamic action. Langmuir26 (8), 5726–5733 (2009).
  • Wu G , MikhailovskyA, KhantHA, FuC, ChiuW, ZasadzinskiJA. Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J. Am. Chem. Soc.130 (26), 8175–8177 (2008).
  • Dromi S , FrenkelV, LukAet al. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin. Cancer Res.13 (9), 2722–2727 (2007).
  • Anyarambhatla GR , NeedhamD. Enhancement of the phase transition permeability of DPPC liposomes by incorporation of MPPC: a new temperature-sensitive liposome for use with mild hyperthermia. J. Liposome Res.9 (4), 491–506 (1999).
  • Li L , Ten HagenTL, SchipperDet al. Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia. J. Control. Release143 (2), 274–279 (2010).
  • Nicholas AR , ScottMJ, KennedyNI, JonesMN. Effect of grafted polyethylene glycol (PEG) on the size, encapsulation efficiency and permeability of vesicles. Biochim. Biophys. Acta1463 (1), 167–178 (2000).
  • Koning GA , EggermontAM, LindnerLH, Ten HagenTL. Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharm. Res.27 (8), 1750–1754 (2010).
  • Gaber MH , WuNZ, HongK, HuangSK, DewhirstMW, PapahadjopoulosD. Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int. J. Radiat. Oncol. Biol. Phys.36 (5), 1177–1187 (1996).
  • Kong G , AnyarambhatlaG, PetrosWPet al. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res.60 (24), 6950–6957 (2000).
  • Weinstein JN , MaginRL, CysykRL, ZaharkoDS. Treatment of solid L1210 murine tumors with local hyperthermia and temperature-sensitive liposomes containing methotrexate. Cancer Res.40 (5), 1388–1395 (1980).
  • Issels R , LindnerL, WendtnerCet al. 1LBA Impact of regional hyperthermia (RHT) on response to neo-adjuvant chemotherapy and survival of patients with high-risk soft-tissue sarcoma (HR-STS): results of the randomized EORTC-ESHO intergroup trial (NCI-00003052). Eur. J. Cancer Suppl.7 (3), 2 (2009).
  • Barenholz Y . Liposome application: problems and prospects. Curr. Opin. Colloid Interface Sci.6 (1), 66–77 (2001).
  • Malam Y , LoizidouM, SeifalianAM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci.30 (11), 592–599 (2009).
  • Danhier F , FeronO, PréatV. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release148 (2), 135–146 (2010).
  • Rofstad EK , GalappathiK, MathiesenBS. Tumor interstitial fluid pressure – a link between tumor hypoxia, microvascular density, and lymph node metastasis. Neoplasia16 (7), 586–594 (2014).
  • Lammers T , HenninkW, StormG. Tumour-targeted nanomedicines: principles and practice. Br. J. Cancer99 (3), 392–397 (2008).
  • Heldin C-H , RubinK, PietrasK, ÖstmanA. High interstitial fluid pressure – an obstacle in cancer therapy. Nat. Rev. Cancer4 (10), 806–813 (2004).
  • Maeda H , SawaT, KonnoT. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control. Release74 (1), 47–61 (2001).
  • Jain RK . Transport of molecules in the tumor interstitium: a review. Cancer Res.47 (12), 3039–3051 (1987).
  • Béduneau A , SaulnierP, BenoitJ-P. Active targeting of brain tumors using nanocarriers. Biomaterials28 (33), 4947–4967 (2007).
  • Weinstein JN , BlumenthalR, SharrowSO, HenkartPA. Antibody-mediated targeting of liposomes. Binding to lymphocytes does not ensure incorporation of vesicle contents into the cells. Biochim. Biophys. Acta509 (2), 272–288 (1978).
  • Chauhan VP , StylianopoulosT, BoucherY, JainRK. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu. Rev. Chem. Biomol. Eng.2, 281–298 (2011).
  • Byrne JD , BetancourtT, Brannon-PeppasL. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev.60 (15), 1615–1626 (2008).
  • Cheng Z , Al ZakiA, HuiJZ, MuzykantovVR, TsourkasA. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science338 (6109), 903–910 (2012).
  • Kamaly N , XiaoZ, ValenciaPM, Radovic-MorenoAF, FarokhzadOC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev.41 (7), 2971–3010 (2012).
  • Peer D , KarpJM, HongS, FarokhzadOC, MargalitR, LangerR. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol.2 (12), 751–760 (2007).
  • Shi J , XiaoZ, KamalyN, FarokhzadOC. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc. Chem. Res.44 (10), 1123–1134 (2011).
  • Kirpotin DB , DrummondDC, ShaoYet al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res.66 (13), 6732–6740 (2006).
  • Jeong Y , XieY, XiaoGet al. Nuclear receptor expression defines a set of prognostic biomarkers for lung cancer. PLoS Med.7 (12), e1000378 (2010).
  • Holbeck S , ChangJ, BestAM, BookoutAL, MangelsdorfDJ, MartinezED. Expression profiling of nuclear receptors in the NCI60 cancer cell panel reveals receptor–drug and receptor–gene interactions. Mol. Endocrinol.24 (6), 1287–1296 (2010).
  • Koshkaryev A , SawantR, DeshpandeM, TorchilinV. Immunoconjugates and long circulating systems: origins, current state of the art and future directions. Adv. Drug Deliv. Rev.65 (1), 24–35 (2013).
  • Srinivasarao M , GallifordCV, LowPS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov.14 (3), 203–219 (2015).
  • Duncan R , VicentM, GrecoF, NicholsonR. Polymer-drug conjugates: towards a novel approach for the treatment of endrocine-related cancer. Endocr. Relat. Cancer12 (Suppl. 1), S189–S199 (2005).
  • Bertrand N , WuJ, XuX, KamalyN, FarokhzadOC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev.66, 2–25 (2014).
  • Monopoli MP , ÅbergC, SalvatiA, DawsonKA. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol.7 (12), 779–786 (2012).
  • Jiang W , KimBY, RutkaJT, ChanWC. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol.3 (3), 145–150 (2008).
  • Yu B , TaiHC, XueW, LeeLJ, LeeRJ. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol. Membr. Biol.27 (7), 286–298 (2010).
  • Saha RN , VasanthakumarS, BendeG, SnehalathaM. Nanoparticulate drug delivery systems for cancer chemotherapy. Mol. Membr. Biol.27 (7), 215–231 (2010).
  • Reubi JC , SchonbrunnA. Illuminating somatostatin analog action at neuroendocrine tumor receptors. Trends Pharmacol. Sci.34 (12), 676–688 (2013).
  • Kularatne SA , WangK, SanthapuramH-KR, LowPS. Prostate-specific membrane antigen targeted imaging and therapy of prostate cancer using a PSMA inhibitor as a homing ligand. Mol. Pharm.6 (3), 780–789 (2009).
  • Lepenies B , LeeJ, SonkariaS. Targeting C-type lectin receptors with multivalent carbohydrate ligands. Adv. Drug Deliv. Rev.65 (9), 1271–1281 (2013).
  • Yuan F , DellianM, FukumuraDet al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res.55 (17), 3752–3756 (1995).
  • Florence AT . “Targeting” nanoparticles: the constraints of physical laws and physical barriers. J. Control. Release164 (2), 115–124 (2012).
  • Pirollo KF , ChangEH. Does a targeting ligand influence nanoparticle tumor localization or uptake?Trends Biotechnol.26 (10), 552–558 (2008).
  • Maruyama K , IshidaO, TakizawaT, MoribeK. Possibility of active targeting to tumor tissues with liposomes. Adv. Drug Deliv. Rev.40 (1), 89–102 (1999).
  • Cedervall T , LynchI, FoyMet al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew. Chem. Int. Ed. Engl.46 (30), 5754–5756 (2007).
  • Lundqvist M , StiglerJ, EliaG, LynchI, CedervallT, DawsonKA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA105 (38), 14265–14270 (2008).
  • Lammers T , KiesslingF, HenninkWE, StormG. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J. Control. Release161 (2), 175–187 (2012).
  • Choi CHJ , AlabiCA, WebsterP, DavisME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl Acad. Sci. USA107 (3), 1235–1240 (2010).
  • Nellis DF , GiardinaSL, JaniniGMet al. Preclinical manufacture of anti-HER2 liposome-inserting, scFv-PEG-lipid conjugate. 2. Conjugate micelle identity, purity, stability, and potency analysis. Biotechnol. Prog.21 (1), 221–232 (2005).
  • Suzuki R , TakizawaT, KuwataYet al. Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int. J. Pharm.346 (1), 143–150 (2008).
  • Lu Y , LowPS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev.64, 342–352 (2012).
  • Sudimack J , LeeRJ. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev.41 (2), 147–162 (2000).
  • Antony AC . Folate receptors. Annu. Rev. Nutr.16 (1), 501–521 (1996).
  • Reddy JA , HanelineLS, SrourEF, AntonyAC, ClappDW, LowPS. Expression and functional characterization of the β-isoform of the folate receptor on CD34+ cells. Blood93 (11), 3940–3948 (1999).
  • Lee RJ , LowPS. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J. Biol. Chem.269 (5), 3198–3204 (1994).
  • Lu Y , LowPS. Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol. Immunother.51 (3), 153–162 (2002).
  • Siegel BA , DehdashtiF, MutchDGet al. Evaluation of 111In-DTPA-folate as a receptor-targeted diagnostic agent for ovarian cancer: initial clinical results. J. Nucl. Med.44 (5), 700–707 (2003).
  • Wang S , LuoJ, LantripDAet al. Design and synthesis of [111In] DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjug. Chem.8 (5), 673–679 (1997).
  • Werner ME , KarveS, SukumarRet al. Folate-targeted nanoparticle delivery of chemo-and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials32 (33), 8548–8554 (2011).
  • Low PS , KularatneSA. Folate-targeted therapeutic and imaging agents for cancer. Curr. Opin. Chem. Biol.13 (3), 256–262 (2009).
  • Zhao X , LiH, LeeRJ. Targeted drug delivery via folate receptors. Expert Opin. Drug Deliv.5 (3), 309–319 (2008).
  • Salazar MDA , RatnamM. The folate receptor: what does it promise in tissue-targeted therapeutics?Cancer Metastasis Rev.26 (1), 141–152 (2007).
  • Weitman SD , LarkRH, ConeyLRet al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res.52 (12), 3396–3401 (1992).
  • Nakashima-Matsushita N , HommaT, YuSet al. Selective expression of folate receptor and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis Rheum.42, 1609–1616 (1999).
  • Galluzzi L , MorselliE, KeppOet al. Mitochondrial gateways to cancer. Mol. Aspects Med.31 (1), 1–20 (2010).
  • Guzman-Villanueva D , MendiolaMR, NguyenHX, WeissigV. Influence of triphenylphosphonium (TPP) cation hydrophobization with phospholipids on cellular toxicity and mitochondrial selectivity (2015). www.symbiosisonlinepublishing.com/pharmacy-pharmaceuticalsciences/pharmacy-pharmaceuticalsciences21.pdf.
  • Fulda S , GalluzziL, KroemerG. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov.9 (6), 447–464 (2010).
  • Smith RA , PorteousCM, GaneAM, MurphyMP. Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl Acad. Sci. USA100 (9), 5407–5412 (2003).
  • Marrache S , DharS. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl Acad. Sci. USA109 (40), 16288–16293 (2012).
  • Pathak RK , KolishettiN, DharS. Targeted nanoparticles in mitochondrial medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.7 (3), 315–329 (2015).
  • Stylianopoulos T , JainRK. Design considerations for nanotherapeutics in oncology. Nanomedicine11 (8), 1893–1907 (2015).
  • Hillier SM , MarescaKP, FemiaFJet al. Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer. Cancer Res.69 (17), 6932–6940 (2009).
  • Li X , YangW, ZouY, MengF, DengC, ZhongZ. Efficacious delivery of protein drugs to prostate cancer cells by PSMA-targeted pH-responsive chimaeric polymersomes. J. Control. Release220, 704–714 (2015).
  • Deng C , JiangY, ChengR, MengF, ZhongZ. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today7 (5), 467–480 (2012).
  • Maeda H . The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul.41 (1), 189–207 (2001).
  • Allen TM . Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer2 (10), 750–763 (2002).
  • Pinheiro VB , TaylorAI, CozensCet al. Synthetic genetic polymers capable of heredity and evolution. Science336 (6079), 341–344 (2012).
  • Farokhzad OC , JonS, KhademhosseiniA, TranT-NT, LavanDA, LangerR. Nanoparticle-aptamer bioconjugates a new approach for targeting prostate cancer cells. Cancer Res.64 (21), 7668–7672 (2004).
  • Xiao Z , FarokhzadOC. Aptamer-functionalized nanoparticles for medical applications: challenges and opportunities. ACS Nano6 (5), 3670–3676 (2012).
  • Dubey PK , MishraV, JainS, MahorS, VyasS. Liposomes modified with cyclic RGD peptide for tumor targeting. J. Drug Target.12 (5), 257–264 (2004).
  • Colombo G , CurnisF, De MoriGMet al. Structure-activity relationships of linear and cyclic peptides containing the NGR tumor-homing motif. J. Biol. Chem.277 (49), 47891–47897 (2002).
  • Negussie AH , MillerJL, ReddyG, DrakeSK, WoodBJ, DreherMR. Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome. J. Control. Release143 (2), 265–273 (2010).
  • Sakaguchi N , KojimaC, HaradaA, KoiwaiK, EmiN, KonoK. Effect of transferrin as a ligand of pH-sensitive fusogenic liposome−lipoplex hybrid complexes. Bioconjug. Chem.19 (8), 1588–1595 (2008).
  • Szwed M , MatusiakA, Laroche-ClaryA, RobertJ, MarszalekI, JozwiakZ. Transferrin as a drug carrier: cytotoxicity, cellular uptake and transport kinetics of doxorubicin transferrin conjugate in the human leukemia cells. Toxicol. In Vitro28 (2), 187–197 (2014).
  • Joshee N , BastolaDR, ChengP-W. Transferrin-facilitated lipofection gene delivery strategy: characterization of the transfection complexes and intracellular trafficking. Hum. Gene Ther.13 (16), 1991–2004 (2002).
  • Alexis F , BastoP, Levy-NissenbaumEet al. HER-2-targeted nanoparticle-affibody bioconjugates for cancer therapy. ChemMedChem3 (12), 1839–1843 (2008).
  • Sandström M , LindskogK, VelikyanIet al. Biodistribution and radiation dosimetry of the anti-HER2 affibody molecule 68Ga-ABY-025 in breast cancer patients. J. Nucl. Med.57 (6), 867–871 (2016).
  • Winkler J , Martin-KilliasP, PlückthunA, Zangemeister-WittkeU. EpCAM-targeted delivery of nanocomplexed siRNA to tumor cells with designed ankyrin repeat proteins. Mol. Cancer Ther.8 (9), 2674–2683 (2009).
  • Trzpis M , MclaughlinPM, De LeijLM, HarmsenMC. Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am. J. Pathol.171 (2), 386–395 (2007).
  • Chari RV . Targeted delivery of chemotherapeutics: tumor-activated prodrug therapy. Adv. Drug Deliv. Rev.31 (1), 89–104 (1998).
  • Glennie MJ , Van De WinkelJG. Renaissance of cancer therapeutic antibodies. Drug Discov. Today8 (11), 503–510 (2003).
  • Abou-Jawde R , ChoueiriT, AlemanyC, MekhailT. An overview of targeted treatments in cancer. Clin. Ther.25 (8), 2121–2137 (2003).
  • Brannon-Peppas L , BlanchetteJO. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev.64, 206–212 (2012).
  • Leserman LD , BarbetJ, KourilskyF, WeinsteinJN. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature288 (5791), 602–604 (1980).
  • Bartlett DW , SuH, HildebrandtIJ, WeberWA, DavisME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl Acad. Sci. USA104 (39), 15549–15554 (2007).
  • Simard P , LerouxJ-C. In vivo evaluation of pH-sensitive polymer-based immunoliposomes targeting the CD33 antigen. Mol. Pharm.7 (4), 1098–1107 (2010).
  • Anselmo AC , MitragotriS. Nanoparticles in the clinic. Bioeng. Transl. Med.1 (1), 10–29 (2016).
  • Munster PN , MillerK, KropIEet al. A Phase I study of MM-302, a HER2-targeted liposomal doxorubicin, in patients with advanced, HER2-positive (HER2+) breast cancer. Presented at : ASCO Annual Meeting. 1–5 June, Chicago, IL, USA (2012).
  • Matsumura Y , GotohM, MuroKet al. Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann. Oncol.15 (3), 517–525 (2004).
  • Albanese A , TangPS, ChanWC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng.14, 1–16 (2012).
  • Rodriguez PL , HaradaT, ChristianDA, PantanoDA, TsaiRK, DischerDE. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science339, 971–975 (2013).
  • Blanco E , ShenH, FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotech.33, 941–951 (2015).
  • Ritz S , SchöttlerS, KotmanNet al. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules16 (4), 1311–1321 (2015).
  • Nie S . Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine5 (4), 523–528 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.