461
Views
0
CrossRef citations to date
0
Altmetric
Review

A Survey of the Mechanisms of Action of Anticancer Transition Metal Complexes

, , &
Pages 2263-2286 | Received 29 Jul 2016, Accepted 07 Oct 2016, Published online: 22 Nov 2016

References

  • Ke Q , CostaM, KazantsisG. Carcinogenicity of metal compounds. In : Handbook on the Toxicology of Metals. NordbergGF, FowlerBA, NordbergM, FribergLS ( Eds). Elsevier, London, UK, 177–196 (2007).
  • Livingstone SE , MihkelsonAE. Metal chelates of biologically important compounds. II. Nickel complexes of dialkyldithiophosphates and their adducts with nitrogen heterocycles. Inorg. Chem.9 (11), 2545–2551 (1970).
  • Williams DR . Metals, ligands, and cancer. Chem. Rev.72 (3), 203–213 (1972).
  • Rosenberg B , VanCampL, TroskoJE, MansourVH. Platinum compounds: a new class of potent antitumor agents. Nature222 (5191), 385–386 (1969).
  • Trondl R , HeffeterP, KowolCR, JakupecMA, BergerW, KepplerBK. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem. Sci.5 (8), 2925–2932 (2014).
  • Galindo-Murillo R , Garcia-RamosJC, Ruiz-AzuaraL, CheathamTE, Cortes-GuzmanF. Intercalation processes of copper complexes in DNA. Nucleic Acids Res.43 (11), 5364–5376 (2015).
  • Hanahan D , WeinbergRA. Hallmarks of cancer: the next generation. Cell144 (5), 646–674 (2011).
  • Huang R , WallqvistA, CovellDG. Anticancer metal compounds in NCI’s tumor-screening database: putative mode of action. Biochem. Pharmacol.69 (7), 1009–1039 (2005).
  • Gianferrara T , BratsosI, AlessioE. A categorization of metal anticancer compounds based on their mode of action. Dalton Trans.2009 (37), 7588–7598 (2009).
  • Gasser G , OttI, Metzler-NolteN. Organometallic anticancer compounds. J. Med. Chem.54 (1), 3–25 (2011).
  • Zaki M , ArjmandF, TabassumS. Current and future potential of metallo drugs: revisiting DNA-binding of metal containing molecules and their diverse mechanism of action. Inorg. Chim. Acta444, 1–22 (2016).
  • Tshuva EY , PeriD. Modern cytotoxic titanium(IV) complexes; insights on the enigmatic involvement of hydrolysis. Coord. Chem. Rev.253 (15–16), 2098–2115 (2009).
  • Miller M , BraitbardO, HochmanJ, TshuvaEY. Insights into molecular mechanism of action of salan titanium(IV) complex with in vitro and in vivo anticancer activity. J. Inorg. Biochem. doi:10.1016/j.jinorgbio.2016.04.007 (2016) ( Epub ahead of print).
  • Manna CM , BraitbardO, WeissE, HochmanJ, TshuvaEY. Cytotoxic salan-titanium(IV) complexes: high activity toward a range of sensitive and drug-resistant cell lines, and mechanistic insights. ChemMedChem7 (4), 703–708 (2015).
  • Kioseoglou E , PetanidisS, GabrielC, SalifoglouA. The chemistry and biology of vanadium compounds in cancer therapeutics. Coordin. Chem. Rev.301–302, 87–105 (2015).
  • Arandjelovic S , TesicZ, PeregoPet al. Cellular sensitivity to beta-diketonato complexes of ruthenium(III), chromium(III) and rhodium(III). Med. Chem.2 (3), 227–237 (2006).
  • Assem FL , HolmesP, LevyLS. The mutagenicity and carcinogenicity of inorganic manganese compounds: a synthesis of the evidence. J. Toxicol. Environ. Health B Crit. Rev.14 (8), 537–570 (2011).
  • Liu J , GuoW, LiJet al. Tumor-targeting novel manganese complex induces ROS-mediated apoptotic and autophagic cancer cell death. Int. J. Mol. Med.35 (3), 607–6016 (2015).
  • Zhou D-F , ChenQ-Y, QiYet al. Anticancer activity, attenuation on the absorption of calcium in mitochondria, and catalase activity for manganese complexes of N-substituted di(picolyl)amine. Inorg. Chem.50 (15), 6929–6937 (2011).
  • Torti SV , TortiFM. Iron and cancer: more ore to be mined. Nat. Rev. Cancer13 (5), 342–355 (2013).
  • Wani WA , BaigU, ShreazSet al. Recent advances in iron complexes as potential anticancer agents. New J. Chem.40 (2), 1063–1090 (2016).
  • González-Bártulos M , Aceves-LuqueroC, QualaiJet al. Pro-oxidant activity of amine-pyridine-based iron complexes efficiently kills cancer and cancer stem-like cells. PLoS ONE10 (9), e0137800 (2015).
  • Chen J , LuoZ, ZhaoZ, XieL, ZhengW, ChenT. Cellular localization of iron(II) polypyridyl complexes determines their anticancer action mechanisms. Biomaterials71, 168–177 (2015).
  • Kwong W-L , LokC-N, TseC-W, WongEL-M, CheC-M. Anti-cancer iron(II) complexes of pentadentate N-donor ligands: cytotoxicity, transcriptomics analyses, and mechanisms of action. Chem. Eur. J.21 (7), 3062–3072 (2015).
  • Munteanu CR , SuntharalingamK. Advances in cobalt complexes as anticancer agents. Dalton Trans.44 (31), 13796–13808 (2015).
  • Luís DV , SilvaJ, TomazAIet al. Insights into the mechanisms underlying the antiproliferative potential of a Co(II) coordination compound bearing 1,10-phenanthroline-5,6-dione: DNA and protein interaction studies. J. Biol. Inorg. Chem.19 (6), 787–803 (2014).
  • Zhang K , ZhaoX, LiuJet al. β-diketone-cobalt complexes inhibit DNA synthesis and induce S-phase arrest in rat C6 glioma cells. Oncol. Lett.7 (3), 881–885 (2014).
  • Zhang H-R , MengT, LiuY-C, ChenZ-F, LiuY-N, LiangH. Synthesis, characterization and biological evaluation of a cobalt(II) complex with 5-chloro-8-hydroxyquinoline as anticancer agent: synthesis and biological evaluation of a new Co quinoline complex. Appl. Organomet. Chem. doi:10.1002/aoc.3498 (2016) ( Epub ahead of print).
  • Yao Y , CostaM. Toxicogenomic effect of nickel and beyond. Arch. Toxicol.88 (9), 1645–1650 (2014).
  • Gurumoorthy P , MahendiranD, Kalilur RahimanA. Theoretical calculations, DNA interaction, topoisomerase I and phosphatidylinositol-3-kinase studies of water soluble mixed-ligand nickel(II) complexes. Chem. Biol. Interact.248, 21–35 (2016).
  • Zhao C , ChenX, ZangDet al. A novel nickel complex works as a proteasomal deubiquitinase inhibitor for cancer therapy. Oncogene doi:10.1038/onc.2016.114 (2016) ( Epub ahead of print).
  • Nagababu P , BaruiAK, ThulasiramBet al. Antiangiogenic activity of mononuclear copper(II) polypyridyl complexes for the treatment of cancers. J. Med. Chem.58 (13), 5226–5241 (2015).
  • Zhang Z , BiC, SchmittSMet al. 1,10-Phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity. J. Biol. Inorg. Chem.17 (8), 1257–1267 (2012).
  • Deng J , GouY, ChenW, FuX, DengH. The Cu/ligand stoichiometry effect on the coordination behavior of aroyl hydrazone with copper(II): structure, anticancer activity and anticancer mechanism. Bioorg. Med. Chem.24 (10), 2190–2198 (2016).
  • Denoyer D , MasaldanS, La FontaineS, CaterMA. Targeting copper in cancer therapy: “Copper That Cancer”. Metallomics7 (11), 1459–1476 (2015).
  • Boodram JN , McgregorIJ, BrunoPM, CresseyPB, HemannMT, SuntharalingamK. Breast cancer stem cell potent copper(II)-non-steroidal anti-inflammatory drug complexes. Angew. Chem. Int. Edit. Engl. Engl.55 (8), 2845–2850 (2016).
  • Liu S , CaoW, YuLet al. Zinc(II) complexes containing bis-benzimidazole derivatives as a new class of apoptosis inducers that trigger DNA damage-mediated p53 phosphorylation in cancer cells. Dalton Trans.42 (16), 5932–5940 (2013).
  • Sanyal R , DashSK, DasS, ChattopadhyayS, RoyS, DasD. Catecholase activity, DNA cleavage and cytotoxicity of six Zn(II) complexes synthesized from designed Mannich ligands: higher reactivity of mononuclear over dinuclear. J. Biol. Inorg. Chem.19 (7), 1099–1111 (2014).
  • Zhang H-R , LiuY-C, MengTet al. Cytotoxicity, DNA binding and cell apoptosis induction of a zinc(II) complex of HBrQ. Med. Chem. Commun.6 (12), 2224–2231 (2015).
  • Bandarra D , LopesM, LopesTet al. Mo(II) complexes: a new family of cytotoxic agents? J. Inorg. Biochem. 104 (11), 1171–1177 (2010).
  • Pfeiffer H , DragounM, ProkopA, SchatzschneiderU. Biological activity of molybdenum(II) allyl dicarbonyl complexes with N-N coligands of variable aromatic surface area on adherent and non-adherent human cancer cells. Z. Anorg. Allg. Chem.639 (8–9), 1568–1576 (2013).
  • Fu Y , Sanchez-CanoC, SoniRet al. The contrasting catalytic efficiency and cancer cell antiproliferative activity of stereoselective organoruthenium transfer hydrogenation catalysts. Dalton Trans.45 (20), 8367–8378 (2016).
  • Vock CA , AngWH, ScolaroCet al. Development of ruthenium antitumor drugs that overcome multidrug resistance mechanisms. J. Med. Chem.50 (9), 2166–2175 (2007).
  • Guo L , LvG, QiuLet al. Insights into anticancer activity and mechanism of action of a ruthenium(II) complex in human esophageal squamous carcinoma EC109 cells. Eur. J. Pharmacol.786, 60–71 (2016).
  • Côrte-Real L , MendesF, CoimbraJet al. Anticancer activity of structurally related ruthenium(II) cyclopentadienyl complexes. J. Biol. Inorg. Chem.19 (6), 853–867 (2014).
  • Chen J , LiG, PengFet al. Investigation of inducing apoptosis in human lung cancer A549 cells and related mechanism of a ruthenium(II) polypyridyl complex. Inorg. Chem. Commun.69, 35–39 (2016).
  • Ma D-L , ChanDS-H, LeungC-H. Group 9 organometallic compounds for therapeutic and bioanalytical applications. Accounts Chem. Res.47 (12), 3614–3631 (2014).
  • Ma D-L , WangM, MaoZ, YangC, NgC-T, LeungC-H. Rhodium complexes as therapeutic agents. Dalton Trans.45 (7), 2762–2771 (2016).
  • McConnell JR , RananawareDP, RamseyDM, BuysKN, ColeML, McAlpineSR. A potential rhodium cancer therapy: studies of a cytotoxic organorhodium(I) complex that binds DNA. Bioorg. Med. Chem. Lett.23 (9), 2527–2531 (2013).
  • Oehninger L , SpreckelmeyerS, HolenyaPet al. Rhodium(I) N-heterocyclic carbene bioorganometallics as in vitro antiproliferative agents with distinct effects on cellular signaling. J. Med. Chem.58 (24), 9591–9600 (2015).
  • Zhang H-R , LiuY-C, ChenZ-Fet al. Studies on the structures, cytotoxicity and apoptosis mechanism of 8-hydroxylquinoline rhodium(III) complexes in T-24 cells. New J. Chem.40 (7), 6005–6014 (2016).
  • Fanelli M , FormicaM, FusiV, GiorgiL, MicheloniM, PaoliP. New trends in platinum and palladium complexes as antineoplastic agents. Coordin. Chem. Rev.310, 41–79 (2016).
  • Kapdi AR , FairlambIJS. Anti-cancer palladium complexes: a focus on PdX2L2, palladacycles and related complexes. Chem. Soc. Rev.43 (13), 4751–4777 (2014).
  • Adiguzel Z , BaykalAT, KacarO, YilmazVT, UlukayaE, AcilanC. Biochemical and proteomic analysis of a potential anticancer agent: palladium(II) saccharinate complex of terpyridine acting through double strand break formation. J. Proteome Res.13 (11), 5240–5249 (2014).
  • Ramachandran E , Senthil RajaD, RathNP, NatarajanK. Role of substitution at terminal nitrogen of 2-oxo-1,2-dihydroquinoline-3-carbaldehyde thiosemicarbazones on the coordination behavior and structure and biological properties of their palladium(II) complexes. Inorg. Chem.52 (3), 1504–1514 (2013).
  • Wang Y , HuJ, CaiYet al. An oxygen-chelate complex, palladium bis-acetylacetonate, induces apoptosis in H460 cells via endoplasmic reticulum stress pathway rather than interacting with DNA. J. Med. Chem.56 (23), 9601–9611 (2013).
  • Haque RA , HasanudinN, IqbalMAet al. Synthesis, crystal structures, in vitro anticancer, and in vivo acute oral toxicity studies of bis-imidazolium/benzimidazolium salts and respective dinuclear Ag(I)-N-heterocyclic carbene complexes. J. Coord. Chem.66 (18), 3211–3228 (2013).
  • Eloy L , JarrousseA-S, TeyssotM-Let al. Anticancer activity of silver-N-heterocyclic carbene complexes: caspase-independent induction of apoptosis via mitochondrial apoptosis-inducing factor (AIF). ChemMedChem7 (5), 805–814 (2012).
  • Banti CN , HadjikakouSK. Anti-proliferative and anti-tumor activity of silver(I) compounds. Metallomics5 (6), 569–596 (2013).
  • Jin X , TanX, ZhangX, HanM, ZhaoY. In vitro and in vivo anticancer effects of singly protonated dehydronorcantharidin silver coordination polymer in CT-26 murine colon carcinoma model. Bioorg. Med. Chem. Lett.25 (20), 4477–4780 (2015).
  • Li Y , LiuG-F, TanC-P, JiL-N, MaoZ-W. Antitumor properties and mechanisms of mitochondria-targeted Ag(I) and Au(I) complexes containing N-heterocyclic carbenes derived from cyclophanes. Metallomics6 (8), 1460–1468 (2014).
  • Li Y-L , QinQ-P, AnY-Fet al. Study on potential antitumor mechanism of quinoline-based silver(I) complexes: synthesis, structural characterization, cytotoxicity, cell cycle and caspase-initiated apoptosis. Inorg. Chem. Commun.40, 73–77 (2014).
  • Ma C , LiangS-K, ZhaoF-Cet al. Cadmium(II) complex with 2-methyl-1H-4,5-imidazoledicarboxylic acid ligand: synthesis, characterization, and biological activity. J. Coord. Chem.67 (21), 3551–3564 (2014).
  • Illán-Cabeza NA , VilaplanaRA, AlvarezYet al. Synthesis, structure and biological activity of a new and efficient Cd(II)-uracil derivative complex system for cleavage of DNA. J. Biol. Inorg. Chem.10 (8), 924–934 (2005).
  • Lu X-M , JiangL, MaoX-A, YeC-H, LuJ-F, CuiJ-R. Interactions with ATP, DNA cleavage and anti-tumor activities of complexes with anions [Mo(V)O2(O2C6H4)2]3-, [Mo(V)0.5W(VI)0.5O2(O2C6H4)2]2.5- and [W(VI)O2(O2C6H4)2]2-. Chinese J. Chem.23 (6), 781–785 (2005).
  • Leonidova A , GasserG. Underestimated potential of organometallic rhenium complexes as anticancer agents. ACS Chem. Biol.9 (10), 2180–2193 (2014).
  • Balakrishnan G , RajendranT, Senthil MuruganKet al. Interaction of rhenium(I) complex carrying long alkyl chain with Calf Thymus DNA: cytotoxic and cell imaging studies. Inorg. Chim. Acta434, 51–59 (2015).
  • Shtemenko NI , ChifotidesHT, DomasevitchKVet al. Synthesis, x-ray structure, interactions with DNA, remarkable in vivo tumor growth suppression and nephroprotective activity of cis-tetrachloro-dipivalato dirhenium(III). J. Inorg. Biochem.129, 127–134 (2013).
  • Suntharalingam K , AwuahSG, BrunoPMet al. Necroptosis-inducing rhenium(V) oxo complexes. J. Am. Chem. Soc.137 (8), 2967–2974 (2015).
  • Ye R-R , TanC-P, ChenM-H, HaoL, JiL-N, MaoZ-W. Mono- and dinuclear phosphorescent rhenium(I) complexes: impact of subcellular localization on anticancer mechanisms. Chem. Eur. J.22 (23), 7800–7809 (2016).
  • Hearn JM , Romero-CanelónI, MunroAFet al. Potent organo-osmium compound shifts metabolism in epithelial ovarian cancer cells. Proc. Natl Acad. Sci. USA112 (29), E3800–E3805 (2015).
  • van Rijt SH , MukherjeeA, PizarroAM, SadlerPJ. Cytotoxicity, hydrophobicity, uptake, and distribution of osmium(II) anticancer complexes in ovarian cancer cells. J. Med. Chem.53 (2), 840–849 (2010).
  • Suntharalingam K , LinW, JohnstoneTCet al. A breast cancer stem cell-selective, mammospheres-potent osmium(VI) nitrido complex. J. Am. Chem. Soc.136 (41), 14413–14416 (2014).
  • van Rijt SH , Romero-CanelónI, FuY, ShnyderSD, SadlerPJ. Potent organometallic osmium compounds induce mitochondria-mediated apoptosis and S-phase cell cycle arrest in A549 non-small-cell lung cancer cells. Metallomics6 (5), 1014–1022 (2014).
  • Hanif M , BabakMV, HartingerCG. Development of anticancer agents: wizardry with osmium. Drug Discov. Today19 (10), 1640–1648 (2014).
  • Meier SM , HanifM, AdhireksanZet al. Novel metal(II) arene 2-pyridinecarbothioamides: a rationale to orally active organometallic anticancer agents. Chem. Sci.4 (4), 1837–1846 (2013).
  • Liu Z , SadlerPJ. Organoiridium complexes: anticancer agents and catalysts. Accounts Chem. Res.47 (4), 1174–1185 (2014).
  • Novohradsky V , ZerzankovaL, StepankovaJet al. A dual-targeting, apoptosis-inducing organometallic half-sandwich iridium anticancer complex. Metallomics6 (8), 14911501 (2014).
  • Yang Q , ChangJ, SongJ, QianM-T, YuJ-M, SunX. Synthesis and in vitro antitumor activity of novel iridium(III) complexes with enantiopure C2-symmetrical vicinal diamine ligands. Bioorg. Med. Chem. Lett.23 (16), 4602–4607 (2013).
  • Liu Z , Romero-CanelónI, QamarBet al. The potent oxidant anticancer activity of organoiridium catalysts. Angew. Chem. Int. Edit. Engl. Engl.53 (15), 3941–3946 (2014).
  • Gothe Y , MarzoT, MessoriL, Metzler-NolteN. Cytotoxic activity and protein binding through an unusual oxidative mechanism by an iridium(I)-NHC complex. Chem. Commun.51 (15), 3151–3153 (2015).
  • Liu L-J , LuL, ZhongH-Jet al. An iridium(III) complex inhibits JMJD2 activities and acts as a potential epigenetic modulator. J. Med. Chem.58 (16), 6697–6703 (2015).
  • Hearn JM , Romero-CanelónI, QamarB, LiuZ, Hands-PortmanI, SadlerPJ. Organometallic iridium(III) anticancer complexes with new mechanisms of action: NCI-60 screening, mitochondrial targeting, and apoptosis. ACS Chem. Biol.8 (6), 1335–1343 (2013).
  • Cao R , JiaJ, MaX, ZhouM, FeiH. Membrane localized iridium(III) complex induces endoplasmic reticulum stress and mitochondria-mediated apoptosis in human cancer cells. J. Med. Chem.56 (9), 3636–3644 (2013).
  • Gibson D . Platinum(IV) anticancer prodrugs – hypotheses and facts. Dalton Trans.45 (33), 12983–12991 (2016).
  • Komeda S . Unique platinum-DNA interactions may lead to more effective platinum-based antitumor drugs. Metallomics3 (7), 650–655 (2011).
  • Mezencev R . Interactions of cisplatin with non-DNA targets and their influence on anticancer activity and drug toxicity: the complex world of the platinum complex. Curr. Cancer Drug Tar.14 (9), 794–816 (2015).
  • Pinato O , MusettiC, SissiC. Pt-based drugs: the spotlight will be on proteins. Metallomics6 (3), 380–395 (2014).
  • Zou T , LumCT, LokC-N, ZhangJ-J, CheC-M. Chemical biology of anticancer gold(III) and gold(I) complexes. Chem. Soc. Rev.44 (24), 8786–8801 (2015).
  • Bertrand B , StefanL, PirrottaMet al. Caffeine-based gold(I) N-heterocyclic carbenes as possible anticancer agents: synthesis and biological properties. Inorg. Chem.53 (4), 2296–2303 (2014).
  • Gutiérrez A , Gracia-FletaL, MarzoI, CativielaC, LagunaA, GimenoMC. Gold(I) thiolates containing amino acid moieties. Cytotoxicity and structure–activity relationship studies. Dalton Trans.43 (45), 17054–17066 (2014).
  • Bertrand B , SpreckelmeyerS, BodioEet al. Exploring the potential of gold(III) cyclometallated compounds as cytotoxic agents: variations on the C-N theme. Dalton Trans.44 (26), 11911–11918 (2015).
  • Bertrand B , de AlmeidaA, van der BurgtEPMet al. New gold(I) organometallic compounds with biological activity in cancer cells: gold(I) arganometallic compounds with biological activity. Eur. J. Inorg. Chem.2014 (27), 4532–4536 (2014).
  • Sun H , BrocatoJ, CostaM. Oral chromium exposure and toxicity. Curr. Envir. Health Rpt2 (3), 295–303 (2015).
  • Luevano J , DamodaranC. A review of molecular events of cadmium-induced carcinogenesis. J. Environ. Pathol. Toxicol. Oncol.33 (3), 183–194 (2014).
  • Sanderson BJ , FergusonLR, DennyWA. Mutagenic and carcinogenic properties of platinum-based anticancer drugs. Mutat. Res.355 (1–2), 59–70 (1996).
  • Jungwirth U , KowolCR, KepplerBK, HartingerCG, BergerW, HeffeterP. Anticancer activity of metal complexes: involvement of redox processes. Antioxid. Redox Sign.15 (4), 1085–1127 (2011).
  • Romero-Canelón I , SadlerPJ. Next-generation metal anticancer complexes: multitargeting via redox modulation. Inorg. Chem.52 (21), 12276–12291 (2013).
  • Geldmacher Y , OleszakM, SheldrickWS. Rhodium(III) and iridium(III) complexes as anticancer agents. Inorg. Chim. Acta393, 84–102 (2012).
  • Berners-Price SJ , AppletonTG. The chemistry of cisplatin in aqueous solution. In : Platinum-Based Drugs in Cancer Therapy. KellandLR, FarrellNP ( Eds). Humana Press, NY, USA, 3–35 (2000).
  • Spoerlein-Guettler C , MahalK, SchobertR, BiersackB. Ferrocene and (arene)ruthenium(II) complexes of the natural anticancer naphthoquinone plumbagin with enhanced efficacy against resistant cancer cells and a genuine mode of action. J. Inorg. Biochem.138, 64–72 (2014).
  • Johnstone TC , SuntharalingamK, LippardSJ. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev.116 (5), 3436–3486 (2016).
  • Leung C-H , HeH-Z, LiuL-J, WangM, ChanDS-H, MaD-L. Metal complexes as inhibitors of transcription factor activity. Coord. Chem. Rev.257 (21–22), 3139–3151 (2013).
  • Diaz-Vivancos P , de SimoneA, KiddleG, FoyerCH. Glutathione-linking cell proliferation to oxidative stress. Free Radic. Biol. Med.89, 1154–1164 (2015).
  • Matés JM , SeguraJA, AlonsoFJ, MárquezJ. Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch. Toxicol.82 (5), 273–299 (2008).
  • Babula P , MasarikM, AdamVet al. Mammalian metallothioneins: properties and functions. Metallomics4 (8), 739–750 (2012).
  • Kozlowski H , PotockiS, RemelliM, Rowinska-ZyrekM, ValensinD. Specific metal ion binding sites in unstructured regions of proteins. Coord. Chem. Rev.257 (19–20), 2625–2638 (2013).
  • Nguyen TH , ArnesanoF, ScintillaSet al. Structural determinants of cisplatin and transplatin binding to the Met-rich motif of Ctr1: a computational spectroscopy approach. J. Chem. Theory Comput.8 (8), 2912–2920 (2012).
  • Sóvágó I , VárnagyK, LihiN, GrenácsÁ. Coordinating properties of peptides containing histidyl residues. Coord. Chem. Rev. (2016) ( In press).
  • Bal W , SokołowskaM, KurowskaE, FallerP. Binding of transition metal ions to albumin: sites, affinities and rates. Biochim. Biophys. Acta1830 (12), 5444–5455 (2013).
  • Kilpin KJ , DysonPJ. Enzyme inhibition by metal complexes: concepts, strategies and applications. Chem. Sci.4 (4), 1410–1419 (2013).
  • Verani CN . Metal complexes as inhibitors of the 26S proteasome in tumor cells. J. Inorg. Biochem.106 (1), 59–67 (2012).
  • Tajeddine N . How do reactive oxygen species and calcium trigger mitochondrial membrane permeabilisation?Biochim. Biophys. Acta1860 (6), 1079–1088 (2016).
  • Giampazolias E , TaitSWG. Mitochondria and the hallmarks of cancer. FEBS J.283 (5), 803–814 (2016).
  • Wen S , ZhuD, HuangP. Targeting cancer cell mitochondria as a therapeutic approach. Future Med. Chem.5 (1), 53–67 (2013).
  • Zhou Z , ChenF, XuG, GouS. Study on the cytotoxic activity of platinum(II) complexes of (1R,2R)-N1-cyclopentyl-1,2-cyclohexanediamine with substituted malonate derivatives. Bioorg. Med. Chem. Lett.26 (2), 322–327 (2016).
  • Cui H , GoddardR, PörschkeK-R, HamacherA, KassackMU. Bispidine analogues of cisplatin, carboplatin, and oxaliplatin. Synthesis, structures, and cytotoxicity. Inorg. Chem.53 (7), 3371–3384 (2014).
  • Trávníček Z , PopaI, ČajanM, ZbořilR, KryštofV, MikulíkJ. The first iron(III) complexes with cyclin-dependent kinase inhibitors: magnetic, spectroscopic (IR, ES+ MS, NMR, 57Fe Mössbauer), theoretical, and biological activity studies. J. Inorg. Biochem.104 (4), 405–417 (2010).
  • Medici S , PeanaM, NurchiVM, LachowiczJI, CrisponiG, ZorodduMA. Noble metals in medicine: latest advances. Coord. Chem. Rev.284, 329–350 (2015).
  • Suryadi J , BierbachU. DNA metalating-intercalating hybrid agents for the treatment of chemoresistant cancers. Chem. Eur. J.18 (41), 12926–12934 (2012).
  • Kasparkova J , KostrhunovaH, NovakovaOet al. A photoactivatable platinum(IV) complex targeting genomic DNA and histone deacetylases. Angew. Chem. Int. Edit. Engl.54 (48), 14478–14482 (2015).
  • Imstepf S , PierrozV, RubbianiRet al. Organometallic rhenium complexes divert doxorubicin to the mitochondria. Angew. Chem. Int. Edit. Engl.55 (8), 2792–2795 (2016).
  • Pati ML , NisoM, FerorelliS, AbateC, BerardiF. Novel metal chelators thiosemicarbazones with activity at the σ2 receptors and P-glycoprotein: an innovative strategy for resistant tumor treatment. RSC Adv.5 (125), 103131–103146 (2015).
  • Filak LK , GöschlS, HeffeterPet al. Metal–arene complexes with Indolo[3,2- c]-quinolines: effects of ruthenium vs osmium and modifications of the lactam unit on intermolecular interactions, anticancer activity, cell cycle, and cellular accumulation. Organometallics32 (3), 903–914 (2013).
  • Piconferrer I , HuesourenaF, IllancabezaNet al. Chloro-fac-tricarbonylrhenium(I) complexes of asymmetric azines derived from 6-acetyl-1,3,7-trimethylpteridine-2,4(1H,3H)-dione with hydrazine and aromatic aldehydes: preparation, structural characterization and biological activity against several human tumor cell lines. J. Inorg. Biochem.103 (1), 94–100 (2009).
  • Kouodom MN , BoscuttiG, CelegatoMet al. Rational design of gold(III)-dithiocarbamato peptidomimetics for the targeted anticancer chemotherapy. J. Inorg. Biochem.117, 248–260 (2012).
  • Cucciolito ME , LittoRD, FanizziFP, MigoniD, RovielloG, RuffoF. Hydrophilic ligands derived from glucose: synthesis, characterization and in vitro cytotoxic activity on cancer cells of Pt(II) complexes. Inorg. Chim. Acta363 (4), 741–747 (2010).
  • Choi J-S , MaityA, GrayT, BerdisAJ. A metal-containing nucleoside that possesses both therapeutic and diagnostic activity against cancer. J. Biol. Chem.290 (15), 9714–9726 (2015).
  • Huang R , WangQ, ZhangX, ZhuJ, SunB. Trastuzumab–cisplatin conjugates for targeted delivery of cisplatin to HER2-overexpressing cancer cells. Biomed. Pharmacother.72, 17–23 (2015).
  • Kaps L , BiersackB, Müller-BunzHet al. Gold(I)–NHC complexes of antitumoral diarylimidazoles: structures, cellular uptake routes and anticancer activities. J. Inorg. Biochem.106 (1), 52–58 (2012).
  • Biersack B , SchobertR. Metallodrug conjugates with steroids and selective estrogen receptor modulators (SERM). Curr. Med. Chem.16 (18), 2324–2337 (2009).
  • Patra M , AwuahSG, LippardSJ. Chemical approach to positional isomers of glucose–platinum conjugates reveals specific cancer targeting through glucose-transporter-mediated uptake in vitro and in vivo. J. Am. Chem. Soc.38 (38), 12541–12551 (2016).
  • Battistin F , ScalettiF, BalducciGet al. Water-soluble Ru(II)- and Ru(III)-halide-PTA complexes (PTA = 1,3,5-triaza-7-phosphaadamantane): chemical and biological properties. J. Inorg. Biochem.160, 180–188 (2016).
  • Geldmacher Y , SplithK, KitanovicIet al. Cellular impact and selectivity of half-sandwich organorhodium(III) anticancer complexes and their organoiridium(III) and trichloridorhodium(III) counterparts. J. Biol. Inorg. Chem.17 (4), 631–646 (2012).
  • Babak MV , MeierSM, LeginAAet al. Am(m)ines make the difference: organoruthenium am(m)ine complexes and their chemistry in anticancer drug development. Chem. Eur. J.19 (13), 4308–4318 (2013).
  • Brown SD , TrotterKD, SutcliffeOBet al. Combining aspects of the platinum anticancer drugs picoplatin and BBR3464 to synthesize a new family of sterically hindered dinuclear complexes; their synthesis, binding kinetics and cytotoxicity. Dalton Trans.41 (37), 11330–11339 (2012).
  • Shi P , JiangQ, ZhaoYet al. DNA binding properties of novel cytotoxic gold(III) complexes of terpyridine ligands: the impact of steric and electrostatic effects. J. Biol. Inorg. Chem.11 (6), 745–752 (2006).
  • Barta Holló B , MagyariJ, ArmakovićSet al. Coordination compounds of a hydrazone derivative with Co(III), Ni(II), Cu(II) and Zn(II): synthesis, characterization, reactivity assessment and biological evaluation. New J. Chem.40 (7), 5885–5895 (2016).
  • Banerjee S , DixitA, KarandeAA, ChakravartyAR. Endoplasmic reticulum targeting tumour selective photocytotoxic oxovanadium(IV) complexes having vitamin-B6 and acridinyl moieties. Dalton Trans.45 (2), 783–796 (2016).
  • Li H , JensenTJ, FronczekFR, VicenteMGH. Syntheses and properties of a series of cationic water-soluble phthalocyanines. J. Med. Chem.51 (3), 502–511 (2008).
  • Peña B , BarhoumiR, BurghardtRC, TurroC, DunbarKR. Confocal fluorescence microscopy studies of a fluorophore-labeled dirhodium compound: visualizing metal-metal bonded molecules in lung cancer (A549) cells. J. Am. Chem. Soc.136 (22), 7861–7864 (2014).
  • Büchel GE , GavrilutaA, NovakMet al. Striking difference in antiproliferative activity of ruthenium- and osmium-nitrosyl complexes with azole heterocycles. Inorg. Chem.52 (11), 6273–6285 (2013).
  • Pelosi G . Thiosemicarbazone metal complexes: from structure to activity. TOCRYJ3 (2), 16–28 (2010).
  • Gandioso A , ShailiE, MassaguerAet al. An integrin-targeted photoactivatable Pt(IV) complex as a selective anticancer pro-drug: synthesis and photoactivation studies. Chem. Commun.51 (44), 9169–9172 (2015).
  • Krämer SD , AschmannHE, HatibovicMet al. When barriers ignore the “rule-of-five”. Adv. Drug Deliver. Rev.101, 62–74 (2016).
  • Bacher F , DömötörO, KaltenbrunnerMet al. Effects of terminal dimethylation and metal coordination of proline-2-formylpyridine thiosemicarbazone hybrids on lipophilicity, antiproliferative activity, and hR2 RNR inhibition. Inorg. Chem.53 (23), 12595–12609 (2014).
  • Foteeva LS , TrofimovDA, KuznetsovaOVet al. A quantitative structure-activity approach for lipophilicity estimation of antitumor complexes of different metals using microemulsion electrokinetic chromatography. J. Pharmaceut. Biomed.55 (3), 409–413 (2011).
  • He L , LiY, TanC-Pet al. Cyclometalated iridium(III) complexes as lysosome-targeted photodynamic anticancer and real-time tracking agents. Chem. Sci.6 (10), 5409–5418 (2015).
  • Simpson PV , SchmidtC, OttI, BruhnH, SchatzschneiderU. Synthesis, cellular uptake and biological activity against pathogenic microorganisms and cancer cells of rhodium and iridium N-heterocyclic carbene complexes bearing charged substituents: rhodium and iridium N-heterocyclic carbene complexes. Eur. J. Inorg. Chem.2013 (32), 5547–5554 (2013).
  • deBoer-Maggard TR , MascharakPK. Photoactivatable metal complexes and their use in biology and medicine. In : Ligand Design in Medicinal Inorganic Chemistry. StorrT ( Ed.). Wiley, Chichester, UK, 355–373 (2014).
  • Macdonald IJ , DoughertyTJ. Basic principles of photodynamic therapy. J. Porphyr. Phthalocya.5 (2), 105–129 (2001).
  • Gill MR , ThomasJA. Ruthenium(II) polypyridyl complexes and DNA-from structural probes to cellular imaging and therapeutics. Chem. Soc. Rev.41 (8), 3179–3192 (2012).
  • Chen T , LiuY, ZhengW-J, LiuJ, WongY-S. Ruthenium polypyridyl complexes that induce mitochondria-mediated apoptosis in cancer cells. Inorg. Chem.49 (14), 6366–6368 (2010).
  • Stamogiannos A , PapakyriakouA, MauvaisF-X, van EndertP, StratikosE. Screening identifies thimerosal as a selective inhibitor of endoplasmic reticulum aminopeptidase 1. ACS Med. Chem. Lett.7 (7), 681–685 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.